ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid Classification of TESS Planet Candidates with Convolutional Neural Networks

381   0   0.0 ( 0 )
 نشر من قبل Hugh Osborn
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurately and rapidly classifying exoplanet candidates from transit surveys is a goal of growing importance as the data rates from space-based survey missions increases. This is especially true for NASAs TESS mission which generates thousands of new candidates each month. Here we created the first deep learning model capable of classifying TESS planet candidates. We adapted the neural network model of Ansdell et al. (2018) to TESS data. We then trained and tested this updated model on 4 sectors of high-fidelity, pixel-level simulations data created using the Lilith simulator and processed using the full TESS SPOC pipeline. We find our model performs very well on our simulated data, with 97% average precision and 92% accuracy on planets in the 2-class model. This accuracy is also boosted by another ~4% if planets found at the wrong periods are included. We also performed 3- and 4-class classification of planets, blended & target eclipsing binaries, and non-astrophysical false positives, which have slightly lower average precision and planet accuracies, but are useful for follow-up decisions. When applied to real TESS data, 61% of TCEs coincident with currently published TOIs are recovered as planets, 4% more are suggested to be EBs, and we propose a further 200 TCEs as planet candidates.

قيم البحث

اقرأ أيضاً

The Transiting Exoplanet Survey Satellite (TESS) mission measured light from stars in ~75% of the sky throughout its two year primary mission, resulting in millions of TESS 30-minute cadence light curves to analyze in the search for transiting exopla nets. To search this vast data trove for transit signals, we aim to provide an approach that is both computationally efficient and produces highly performant predictions. This approach minimizes the required human search effort. We present a convolutional neural network, which we train to identify planetary transit signals and dismiss false positives. To make a prediction for a given light curve, our network requires no prior transit parameters identified using other methods. Our network performs inference on a TESS 30-minute cadence light curve in ~5ms on a single GPU, enabling large scale archival searches. We present 181 new planet candidates identified by our network, which pass subsequent human vetting designed to rule out false positives. Our neural network model is additionally provided as open-source code for public use and extension.
The role of social media, in particular microblogging platforms such as Twitter, as a conduit for actionable and tactical information during disasters is increasingly acknowledged. However, time-critical analysis of big crisis data on social media st reams brings challenges to machine learning techniques, especially the ones that use supervised learning. The Scarcity of labeled data, particularly in the early hours of a crisis, delays the machine learning process. The current state-of-the-art classification methods require a significant amount of labeled data specific to a particular event for training plus a lot of feature engineering to achieve best results. In this work, we introduce neural network based classification methods for binary and multi-class tweet classification task. We show that neural network based models do not require any feature engineering and perform better than state-of-the-art methods. In the early hours of a disaster when no labeled data is available, our proposed method makes the best use of the out-of-event data and achieves good results.
Galaxy clusters appear as extended sources in XMM-Newton images, but not all extended sources are clusters. So, their proper classification requires visual inspection with optical images, which is a slow process with biases that are almost impossible to model. We tackle this problem with a novel approach, using convolutional neural networks (CNNs), a state-of-the-art image classification tool, for automatic classification of galaxy cluster candidates. We train the networks on combined XMM-Newton X-ray observations with their optical counterparts from the all-sky Digitized Sky Survey. Our data set originates from the X-CLASS survey sample of galaxy cluster candidates, selected by a specially developed pipeline, the XAmin, tailored for extended source detection and characterisation. Our data set contains 1 707 galaxy cluster candidates classified by experts. Additionally, we create an official Zooniverse citizen science project, The Hunt for Galaxy Clusters, to probe whether citizen volunteers could help in a challenging task of galaxy cluster visual confirmation. The project contained 1 600 galaxy cluster candidates in total of which 404 overlap with the experts sample. The networks were trained on expert and Zooniverse data separately. The CNN test sample contains 85 spectroscopically confirmed clusters and 85 non-clusters that appear in both data sets. Our custom network achieved the best performance in the binary classification of clusters and non-clusters, acquiring accuracy of 90 %, averaged after 10 runs. The results of using CNNs on combined X-ray and optical data for galaxy cluster candidate classification are encouraging and there is a lot of potential for future usage and improvements.
Vetting of exoplanet candidates in transit surveys is a manual process, which suffers from a large number of false positives and a lack of consistency. Previous work has shown that Convolutional Neural Networks (CNN) provide an efficient solution to these problems. Here, we apply a CNN to classify planet candidates from the Next Generation Transit Survey (NGTS). For training datasets we compare both real data with injected planetary transits and fully-simulated data, as well as how their different compositions affect network performance. We show that fewer hand labelled lightcurves can be utilised, while still achieving competitive results. With our best model, we achieve an AUC (area under the curve) score of $(95.6pm{0.2})%$ and an accuracy of $(88.5pm{0.3})%$ on our unseen test data, as well as $(76.5pm{0.4})%$ and $(74.6pm{1.1})%$ in comparison to our existing manual classifications. The neural network recovers 13 out of 14 confirmed planets observed by NGTS, with high probability. We use simulated data to show that the overall network performance is resilient to mislabelling of the training dataset, a problem that might arise due to unidentified, low signal-to-noise transits. Using a CNN, the time required for vetting can be reduced by half, while still recovering the vast majority of manually flagged candidates. In addition, we identify many new candidates with high probabilities which were not flagged by human vetters.
We present TRICERATOPS, a new Bayesian tool that can be used to vet and validate TESS Objects of Interest (TOIs). We test the tool on 68 TOIs that have been previously confirmed as planets or rejected as astrophysical false positives. By looking in t he false positive probability (FPP) -- nearby false positive probability (NFPP) plane, we define criteria that TOIs must meet to be classified as validated planets (FPP < 0.015 and NFPP < 10^-3), likely planets (FPP < 0.5 and NFPP < 10^-3), and likely nearby false positives (NFPP > 10^-1). We apply this procedure on 384 unclassified TOIs and statistically validate 12, classify 125 as likely planets, and classify 52 as likely nearby false positives. Of the 12 statistically validated planets, 9 are newly validated. TRICERATOPS is currently the only TESS vetting and validation tool that models transits from nearby contaminant stars in addition to the target star. We therefore encourage use of this tool to prioritize follow-up observations that confirm bona fide planets and identify false positives originating from nearby stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا