ﻻ يوجد ملخص باللغة العربية
Vetting of exoplanet candidates in transit surveys is a manual process, which suffers from a large number of false positives and a lack of consistency. Previous work has shown that Convolutional Neural Networks (CNN) provide an efficient solution to these problems. Here, we apply a CNN to classify planet candidates from the Next Generation Transit Survey (NGTS). For training datasets we compare both real data with injected planetary transits and fully-simulated data, as well as how their different compositions affect network performance. We show that fewer hand labelled lightcurves can be utilised, while still achieving competitive results. With our best model, we achieve an AUC (area under the curve) score of $(95.6pm{0.2})%$ and an accuracy of $(88.5pm{0.3})%$ on our unseen test data, as well as $(76.5pm{0.4})%$ and $(74.6pm{1.1})%$ in comparison to our existing manual classifications. The neural network recovers 13 out of 14 confirmed planets observed by NGTS, with high probability. We use simulated data to show that the overall network performance is resilient to mislabelling of the training dataset, a problem that might arise due to unidentified, low signal-to-noise transits. Using a CNN, the time required for vetting can be reduced by half, while still recovering the vast majority of manually flagged candidates. In addition, we identify many new candidates with high probabilities which were not flagged by human vetters.
We describe the Next Generation Transit Survey (NGTS), which is a ground-based project searching for transiting exoplanets orbiting bright stars. NGTS builds on the legacy of previous surveys, most notably WASP, and is designed to achieve higher phot
The Transiting Exoplanet Survey Satellite (TESS) mission measured light from stars in ~75% of the sky throughout its two year primary mission, resulting in millions of TESS 30-minute cadence light curves to analyze in the search for transiting exopla
The Next Generation Transit Survey (NGTS) is a new ground-based sky survey designed to find transiting Neptunes and super-Earths. By covering at least sixteen times the sky area of Kepler we will find small planets around stars that are sufficiently
A machine learning technique with two-dimension convolutional neural network is proposed for detecting exoplanet transits. To test this new method, five different types of deep learning models with or without folding are constructed and studied. The
We present the results of a search for stellar flares in the first data release from the Next Generation Transit Survey (NGTS). We have found 610 flares from 339 stars, with spectral types between F8 and M6, the majority of which belong to the Galact