ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis and evaluation of Deep Learning based Super-Resolution algorithms to improve performance in Low-Resolution Face Recognition

74   0   0.0 ( 0 )
 نشر من قبل Angelo Menezes
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Angelo G. Menezes




اسأل ChatGPT حول البحث

Surveillance scenarios are prone to several problems since they usually involve low-resolution footage, and there is no control of how far the subjects may be from the camera in the first place. This situation is suitable for the application of upsampling (super-resolution) algorithms since they may be able to recover the discriminant properties of the subjects involved. While general super-resolution approaches were proposed to enhance image quality for human-level perception, biometrics super-resolution methods seek the best computer perception version of the image since their focus is on improving automatic recognition performance. Convolutional neural networks and deep learning algorithms, in general, have been applied to computer vision tasks and are now state-of-the-art for several sub-domains, including image classification, restoration, and super-resolution. However, no work has evaluated the effects that the latest proposed super-resolution methods may have upon the accuracy and face verification performance in low-resolution in-the-wild data. This project aimed at evaluating and adapting different deep neural network architectures for the task of face super-resolution driven by face recognition performance in real-world low-resolution images. The experimental results in a real-world surveillance and attendance datasets showed that general super-resolution architectures might enhance face verification performance of deep neural networks trained on high-resolution faces. Also, since neural networks are function approximators and can be trained based on specific objective functions, the use of a customized loss function optimized for feature extraction showed promising results for recovering discriminant features in low-resolution face images.



قيم البحث

اقرأ أيضاً

Face super-resolution (FSR), also known as face hallucination, which is aimed at enhancing the resolution of low-resolution (LR) face images to generate high-resolution (HR) face images, is a domain-specific image super-resolution problem. Recently, FSR has received considerable attention and witnessed dazzling advances with the development of deep learning techniques. To date, few summaries of the studies on the deep learning-based FSR are available. In this survey, we present a comprehensive review of deep learning-based FSR methods in a systematic manner. First, we summarize the problem formulation of FSR and introduce popular assessment metrics and loss functions. Second, we elaborate on the facial characteristics and popular datasets used in FSR. Third, we roughly categorize existing methods according to the utilization of facial characteristics. In each category, we start with a general description of design principles, then present an overview of representative approaches, and then discuss the pros and cons among them. Fourth, we evaluate the performance of some state-of-the-art methods. Fifth, joint FSR and other tasks, and FSR-related applications are roughly introduced. Finally, we envision the prospects of further technological advancement in this field. A curated list of papers and resources to face super-resolution are available at url{https://github.com/junjun-jiang/Face-Hallucination-Benchmark}
128 - Peiying Li , Shikui Tu , Lei Xu 2021
Current face recognition tasks are usually carried out on high-quality face images, but in reality, most face images are captured under unconstrained or poor conditions, e.g., by video surveillance. Existing methods are featured by learning data unce rtainty to avoid overfitting the noise, or by adding margins to the angle or cosine space of the normalized softmax loss to penalize the target logit, which enforces intra-class compactness and inter-class discrepancy. In this paper, we propose a deep Rival Penalized Competitive Learning (RPCL) for deep face recognition in low-resolution (LR) images. Inspired by the idea of the RPCL, our method further enforces regulation on the rival logit, which is defined as the largest non-target logit for an input image. Different from existing methods that only consider penalization on the target logit, our method not only strengthens the learning towards the target label, but also enforces a reverse direction, i.e., becoming de-learning, away from the rival label. Comprehensive experiments demonstrate that our method improves the existing state-of-the-art methods to be very robust for LR face recognition.
A non-parametric low-resolution face recognition model for resource-constrained environments with limited networking and computing is proposed in this work. Such environments often demand a small model capable of being effectively trained on a small number of labeled data samples, with low training complexity, and low-resolution input images. To address these challenges, we adopt an emerging explainable machine learning methodology called successive subspace learning (SSL).SSL offers an explainable non-parametric model that flexibly trades the model size for verification performance. Its training complexity is significantly lower since its model is trained in a one-pass feedforward manner without backpropagation. Furthermore, active learning can be conveniently incorporated to reduce the labeling cost. The effectiveness of the proposed model is demonstrated by experiments on the LFW and the CMU Multi-PIE datasets.
Video super-resolution (VSR) technology excels in reconstructing low-quality video, avoiding unpleasant blur effect caused by interpolation-based algorithms. However, vast computation complexity and memory occupation hampers the edge of deplorability and the runtime inference in real-life applications, especially for large-scale VSR task. This paper explores the possibility of real-time VSR system and designs an efficient and generic VSR network, termed EGVSR. The proposed EGVSR is based on spatio-temporal adversarial learning for temporal coherence. In order to pursue faster VSR processing ability up to 4K resolution, this paper tries to choose lightweight network structure and efficient upsampling method to reduce the computation required by EGVSR network under the guarantee of high visual quality. Besides, we implement the batch normalization computation fusion, convolutional acceleration algorithm and other neural network acceleration techniques on the actual hardware platform to optimize the inference process of EGVSR network. Finally, our EGVSR achieves the real-time processing capacity of [email protected]. Compared with TecoGAN, the most advanced VSR network at present, we achieve 85.04% reduction of computation density and 7.92x performance speedups. In terms of visual quality, the proposed EGVSR tops the list of most metrics (such as LPIPS, tOF, tLP, etc.) on the public test dataset Vid4 and surpasses other state-of-the-art methods in overall performance score. The source code of this project can be found on https://github.com/Thmen/EGVSR.
Despite significant progress toward super resolving more realistic images by deeper convolutional neural networks (CNNs), reconstructing fine and natural textures still remains a challenging problem. Recent works on single image super resolution (SIS R) are mostly based on optimizing pixel and content wise similarity between recovered and high-resolution (HR) images and do not benefit from recognizability of semantic classes. In this paper, we introduce a novel approach using categorical information to tackle the SISR problem; we present a decoder architecture able to extract and use semantic information to super-resolve a given image by using multitask learning, simultaneously for image super-resolution and semantic segmentation. To explore categorical information during training, the proposed decoder only employs one shared deep network for two task-specific output layers. At run-time only layers resulting HR image are used and no segmentation label is required. Extensive perceptual experiments and a user study on images randomly selected from COCO-Stuff dataset demonstrate the effectiveness of our proposed method and it outperforms the state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا