ﻻ يوجد ملخص باللغة العربية
Despite significant progress toward super resolving more realistic images by deeper convolutional neural networks (CNNs), reconstructing fine and natural textures still remains a challenging problem. Recent works on single image super resolution (SISR) are mostly based on optimizing pixel and content wise similarity between recovered and high-resolution (HR) images and do not benefit from recognizability of semantic classes. In this paper, we introduce a novel approach using categorical information to tackle the SISR problem; we present a decoder architecture able to extract and use semantic information to super-resolve a given image by using multitask learning, simultaneously for image super-resolution and semantic segmentation. To explore categorical information during training, the proposed decoder only employs one shared deep network for two task-specific output layers. At run-time only layers resulting HR image are used and no segmentation label is required. Extensive perceptual experiments and a user study on images randomly selected from COCO-Stuff dataset demonstrate the effectiveness of our proposed method and it outperforms the state-of-the-art methods.
Super-resolution (SR) has traditionally been based on pairs of high-resolution images (HR) and their low-resolution (LR) counterparts obtained artificially with bicubic downsampling. However, in real-world SR, there is a large variety of realistic im
Despite convolutional network-based methods have boosted the performance of single image super-resolution (SISR), the huge computation costs restrict their practical applicability. In this paper, we develop a computation efficient yet accurate networ
Single image super-resolution task has witnessed great strides with the development of deep learning. However, most existing studies focus on building a more complex neural network with a massive number of layers, bringing heavy computational cost an
We propose a novel single-image super-resolution approach based on the geostatistical method of kriging. Kriging is a zero-bias minimum-variance estimator that performs spatial interpolation based on a weighted average of known observations. Rather t
Image super-resolution is a process to enhance image resolution. It is widely used in medical imaging, satellite imaging, target recognition, etc. In this paper, we conduct continuous modeling and assume that the unknown image intensity function is d