ﻻ يوجد ملخص باللغة العربية
Graph-modification problems, where we add/delete a small number of vertices/edges to make the given graph to belong to a simpler graph class, is a well-studied optimization problem in all algorithmic paradigms including classical, approximation and parameterized complexity. Specifically, graph-deletion problems, where one needs to delete at most $k$ vertices to place it in a given non-trivial hereditary (closed under induced subgraphs) graph class, captures several well-studied problems including {sc Vertex Cover}, {sc Feedback Vertex Set}, {sc Odd Cycle Transveral}, {sc Cluster Vertex Deletion}, and {sc Perfect Deletion}. Investigation into these problems in parameterized complexity has given rise to powerful tools and techniques. While a precise characterization of the graph classes for which the problem is {it fixed-parameter tractable} (FPT) is elusive, it has long been known that if the graph class is characterized by a {it finite} set of forbidden graphs, then the problem is FPT. In this paper, we initiate a study of a natural variation of the problem of deletion to {it scattered graph classes} where we need to delete at most $k$ vertices so that in the resulting graph, each connected component belongs to one of a constant number of graph classes. A simple hitting set based approach is no longer feasible even if each of the graph classes is characterized by finite forbidden sets. As our main result, we show that this problem is fixed-parameter tractable (FPT) when the deletion problem corresponding to each of the finite classes is known to be FPT and the properties that a graph belongs to each of the classes is expressible in CMSO logic. When each graph class has a finite forbidden set, we give a faster FPT algorithm using the well-known techniques of iterative compression and important separators.
{sc Directed Feedback Vertex Set (DFVS)} is a fundamental computational problem that has received extensive attention in parameterized complexity. In this paper, we initiate the study of a wide generalization, the {sc ${cal H}$-free SCC Deletion} pro
We investigate the parameterized complexity of finding subgraphs with hereditary properties on graphs belonging to a hereditary graph class. Given a graph $G$, a non-trivial hereditary property $Pi$ and an integer parameter $k$, the general problem $
We consider the problems of deciding whether an input graph can be modified by removing/adding at most k vertices/edges such that the result of the modification satisfies some property definable in first-order logic. We establish a number of sufficie
A cactus is a connected graph that does not contain $K_4 - e$ as a minor. Given a graph $G = (V, E)$ and integer $k ge 0$, Cactus Vertex Deletion (also known as Diamond Hitting Set) is the problem of deciding whether $G$ has a vertex set of size at m
A graph is $d$-orientable if its edges can be oriented so that the maximum in-degree of the resulting digraph is at most $d$. $d$-orientability is a well-studied concept with close connections to fundamental graph-theoretic notions and applications a