ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Continuous-time Conflict Based Search

68   0   0.0 ( 0 )
 نشر من قبل Anton Andreychuk
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Conflict-Based Search (CBS) is a powerful algorithmic framework for optimally solving classical multi-agent path finding (MAPF) problems, where time is discretized into the time steps. Continuous-time CBS (CCBS) is a recently proposed version of CBS that guarantees optimal solutions without the need to discretize time. However, the scalability of CCBS is limited because it does not include any known improvements of CBS. In this paper, we begin to close this gap and explore how to adapt successful CBS improvements, namely, prioritizing conflicts (PC), disjoint splitting (DS), and high-level heuristics, to the continuous time setting of CCBS. These adaptions are not trivial, and require careful handling of different types of constraints, applying a generalized version of the Safe interval path planning (SIPP) algorithm, and extending the notion of cardinal conflicts. We evaluate the effect of the suggested enhancements by running experiments both on general graphs and $2^k$-neighborhood grids. CCBS with these improvements significantly outperforms vanilla CCBS, solving problems with almost twice as many agents in some cases and pushing the limits of multiagent path finding in continuous-time domains.



قيم البحث

اقرأ أيضاً

Recent superhuman results in games have largely been achieved in a variety of zero-sum settings, such as Go and Poker, in which agents need to compete against others. However, just like humans, real-world AI systems have to coordinate and communicate with other agents in cooperative partially observable environments as well. These settings commonly require participants to both interpret the actions of others and to act in a way that is informative when being interpreted. Those abilities are typically summarized as theory f mind and are seen as crucial for social interactions. In this paper we propose two different search techniques that can be applied to improve an arbitrary agreed-upon policy in a cooperative partially observable game. The first one, single-agent search, effectively converts the problem into a single agent setting by making all but one of the agents play according to the agreed-upon policy. In contrast, in multi-agent search all agents carry out the same common-knowledge search procedure whenever doing so is computationally feasible, and fall back to playing according to the agreed-upon policy otherwise. We prove that these search procedures are theoretically guaranteed to at least maintain the original performance of the agreed-upon policy (up to a bounded approximation error). In the benchmark challenge problem of Hanabi, our search technique greatly improves the performance of every agent we tested and when applied to a policy trained using RL achieves a new state-of-the-art score of 24.61 / 25 in the game, compared to a previous-best of 24.08 / 25.
Conflict-Based Search (CBS) is a state-of-the-art algorithm for multi-agent path finding. At the high level, CBS repeatedly detects conflicts and resolves one of them by splitting the current problem into two subproblems. Previous work chooses the co nflict to resolve by categorizing the conflict into three classes and always picking a conflict from the highest-priority class. In this work, we propose an oracle for conflict selection that results in smaller search tree sizes than the one used in previous work. However, the computation of the oracle is slow. Thus, we propose a machine-learning framework for conflict selection that observes the decisions made by the oracle and learns a conflict-selection strategy represented by a linear ranking function that imitates the oracles decisions accurately and quickly. Experiments on benchmark maps indicate that our method significantly improves the success rates, the search tree sizes and runtimes over the current state-of-the-art CBS solver.
We explore the potential of continuous local search (CLS) in SAT solving by proposing a novel approach for finding a solution of a hybrid system of Boolean constraints. The algorithm is based on CLS combined with belief propagation on binary decision diagrams (BDDs). Our framework accepts all Boolean constraints that admit compact BDDs, including symmetric Boolean constraints and small-coefficient pseudo-Boolean constraints as interesting families. We propose a novel algorithm for efficiently computing the gradient needed by CLS. We study the capabilities and limitations of our versatile CLS solver, GradSAT, by applying it on many benchmark instances. The experimental results indicate that GradSAT can be a useful addition to the portfolio of existing SAT and MaxSAT solvers for solving Boolean satisfiability and optimization problems.
Distributed Constraint Optimization Problems (DCOPs) are a widely studied class of optimization problems in which interaction between a set of cooperative agents are modeled as a set of constraints. DCOPs are NP-hard and significant effort has been d evoted to developing methods for finding incomplete solutions. In this paper, we study an emerging class of such incomplete algorithms that are broadly termed as population-based algorithms. The main characteristic of these algorithms is that they maintain a population of candidate solutions of a given problem and use this population to cover a large area of the search space and to avoid local-optima. In recent years, this class of algorithms has gained significant attention due to their ability to produce high-quality incomplete solutions. With the primary goal of further improving the quality of solutions compared to the state-of-the-art incomplete DCOP algorithms, we present two new population-based algorithms in this paper. Our first approach, Anytime Evolutionary DCOP or AED, exploits evolutionary optimization meta-heuristics to solve DCOPs. We also present a novel anytime update mechanism that gives AED its anytime property. While in our second contribution, we show that population-based approaches can be combined with local search approaches. Specifically, we develop an algorithm called DPSA based on the Simulated Annealing meta-heuristic. We empirically evaluate these two algorithms to illustrate their respective effectiveness in different settings against the state-of-the-art incomplete DCOP algorithms including all existing population-based algorithms in a wide variety of benchmarks. Our evaluation shows AED and DPSA markedly outperform the state-of-the-art and produce up to 75% improved solutions.
This paper presents a distributed, efficient, scalable and real-time motion planning algorithm for a large group of agents moving in 2 or 3-dimensional spaces. This algorithm enables autonomous agents to generate individual trajectories independently with only the relative position information of neighboring agents. Each agent applies a force-based control that contains two main terms: collision avoidance and navigational feedback. The first term keeps two agents separate with a certain distance, while the second term attracts each agent toward its goal location. Compared with existing collision-avoidance algorithms, the proposed force-based motion planning (FMP) algorithm is able to find collision-free motions with lower transition time, free from velocity state information of neighbouring agents. It leads to less computational overhead. The performance of proposed FMP is examined over several dense and complex 2D and 3D benchmark simulation scenarios, with results outperforming existing methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا