ترغب بنشر مسار تعليمي؟ اضغط هنا

On Population-Based Algorithms for Distributed Constraint Optimization Problems

118   0   0.0 ( 0 )
 نشر من قبل Saaduddin Mahmud
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Distributed Constraint Optimization Problems (DCOPs) are a widely studied class of optimization problems in which interaction between a set of cooperative agents are modeled as a set of constraints. DCOPs are NP-hard and significant effort has been devoted to developing methods for finding incomplete solutions. In this paper, we study an emerging class of such incomplete algorithms that are broadly termed as population-based algorithms. The main characteristic of these algorithms is that they maintain a population of candidate solutions of a given problem and use this population to cover a large area of the search space and to avoid local-optima. In recent years, this class of algorithms has gained significant attention due to their ability to produce high-quality incomplete solutions. With the primary goal of further improving the quality of solutions compared to the state-of-the-art incomplete DCOP algorithms, we present two new population-based algorithms in this paper. Our first approach, Anytime Evolutionary DCOP or AED, exploits evolutionary optimization meta-heuristics to solve DCOPs. We also present a novel anytime update mechanism that gives AED its anytime property. While in our second contribution, we show that population-based approaches can be combined with local search approaches. Specifically, we develop an algorithm called DPSA based on the Simulated Annealing meta-heuristic. We empirically evaluate these two algorithms to illustrate their respective effectiveness in different settings against the state-of-the-art incomplete DCOP algorithms including all existing population-based algorithms in a wide variety of benchmarks. Our evaluation shows AED and DPSA markedly outperform the state-of-the-art and produce up to 75% improved solutions.



قيم البحث

اقرأ أيضاً

The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool to model multi-agent coordination problems that are distributed by nature. The formulation is suitable for problems where variables are discrete and constraint util ities are represented in tabular form. However, many real-world applications have variables that are continuous and tabular forms thus cannot accurately represent constraint utilities. To overcome this limitation, researchers have proposed the Functional DCOP (F-DCOP) model, which are DCOPs with continuous variables. But existing approaches usually come with some restrictions on the form of constraint utilities and are without quality guarantees. Therefore, in this paper, we (i) propose exact algorithms to solve a specific subclass of F-DCOPs; (ii) propose approximation methods with quality guarantees to solve general F-DCOPs; and (iii) empirically show that our algorithms outperform existing state-of-the-art F-DCOP algorithms on randomly generated instances when given the same communication limitations.
Tree projections provide a unifying framework to deal with most structural decomposition methods of constraint satisfaction problems (CSPs). Within this framework, a CSP instance is decomposed into a number of sub-problems, called views, whose soluti ons are either already available or can be computed efficiently. The goal is to arrange portions of these views in a tree-like structure, called tree projection, which determines an efficiently solvable CSP instance equivalent to the original one. Deciding whether a tree projection exists is NP-hard. Solution methods have therefore been proposed in the literature that do not require a tree projection to be given, and that either correctly decide whether the given CSP instance is satisfiable, or return that a tree projection actually does not exist. These approaches had not been generalized so far on CSP extensions for optimization problems, where the goal is to compute a solution of maximum value/minimum cost. The paper fills the gap, by exhibiting a fixed-parameter polynomial-time algorithm that either disproves the existence of tree projections or computes an optimal solution, with the parameter being the size of the expression of the objective function to be optimized over all possible solutions (and not the size of the whole constraint formula, used in related works). Tractability results are also established for the problem of returning the best K solutions. Finally, parallel algorithms for such optimization problems are proposed and analyzed. Given that the classes of acyclic hypergraphs, hypergraphs of bounded treewidth, and hypergraphs of bounded generalized hypertree width are all covered as special cases of the tree projection framework, the results in this paper directly apply to these classes. These classes are extensively considered in the CSP setting, as well as in conjunctive database query evaluation and optimization.
Designing a search heuristic for constraint programming that is reliable across problem domains has been an important research topic in recent years. This paper concentrates on one family of candidates: counting-based search. Such heuristics seek to make branching decisions that preserve most of the solutions by determining what proportion of solutions to each individual constraint agree with that decision. Whereas most generic search heuristics in constraint programming rely on local information at the level of the individual variable, our search heuristics are based on more global information at the constraint level. We design several algorithms that are used to count the number of solutions to specific families of constraints and propose some search heuristics exploiting such information. The experimental part of the paper considers eight problem domains ranging from well-established benchmark puzzles to rostering and sport scheduling. An initial empirical analysis identifies heuristic maxSD as a robust candidate among our proposals.eWe then evaluate the latter against the state of the art, including the latest generic search heuristics, restarts, and discrepancy-based tree traversals. Experimental results show that counting-based search generally outperforms other generic heuristics.
Distributed Constraint Optimization Problems (DCOPs) are a widely studied framework for coordinating interactions in cooperative multi-agent systems. In classical DCOPs, variables owned by agents are assumed to be discrete. However, in many applicati ons, such as target tracking or sleep scheduling in sensor networks, continuous-valued variables are more suitable than discrete ones. To better model such applications, researchers have proposed Continuous DCOPs (C-DCOPs), an extension of DCOPs, that can explicitly model problems with continuous variables. The state-of-the-art approaches for solving C-DCOPs experience either onerous memory or computation overhead and unsuitable for non-differentiable optimization problems. To address this issue, we propose a new C-DCOP algorithm, namely Particle Swarm Optimization Based C-DCOP (PCD), which is inspired by Particle Swarm Optimization (PSO), a well-known centralized population-based approach for solving continuous optimization problems. In recent years, population-based algorithms have gained significant attention in classical DCOPs due to their ability in producing high-quality solutions. Nonetheless, to the best of our knowledge, this class of algorithms has not been utilized to solve C-DCOPs and there has been no work evaluating the potential of PSO in solving classical DCOPs or C-DCOPs. In light of this observation, we adapted PSO, a centralized algorithm, to solve C-DCOPs in a decentralized manner. The resulting PCD algorithm not only produces good-quality solutions but also finds solutions without any requirement for derivative calculations. Moreover, we design a crossover operator that can be used by PCD to further improve the quality of solutions found. Finally, we theoretically prove that PCD is an anytime algorithm and empirically evaluate PCD against the state-of-the-art C-DCOP algorithms in a wide variety of benchmarks.
Several algorithms for solving constraint satisfaction problems are based on survey propagation, a variational inference scheme used to obtain approximate marginal probability estimates for variable assignments. These marginals correspond to how freq uently each variable is set to true among satisfying assignments, and are used to inform branching decisions during search; however, marginal estimates obtained via survey propagation are approximate and can be self-contradictory. We introduce a more general branching strategy based on streamlining constraints, which sidestep hard assignments to variables. We show that streamlined solvers consistently outperform decimation-based solvers on random k-SAT instances for several problem sizes, shrinking the gap between empirical performance and theoretical limits of satisfiability by 16.3% on average for k=3,4,5,6.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا