ﻻ يوجد ملخص باللغة العربية
We explore the potential of continuous local search (CLS) in SAT solving by proposing a novel approach for finding a solution of a hybrid system of Boolean constraints. The algorithm is based on CLS combined with belief propagation on binary decision diagrams (BDDs). Our framework accepts all Boolean constraints that admit compact BDDs, including symmetric Boolean constraints and small-coefficient pseudo-Boolean constraints as interesting families. We propose a novel algorithm for efficiently computing the gradient needed by CLS. We study the capabilities and limitations of our versatile CLS solver, GradSAT, by applying it on many benchmark instances. The experimental results indicate that GradSAT can be a useful addition to the portfolio of existing SAT and MaxSAT solvers for solving Boolean satisfiability and optimization problems.
We compare the impact of hardware advancement and algorithm advancement for SAT solving over the last two decades. In particular, we compare 20-year-old SAT-solvers on new computer hardware with modern SAT-solvers on 20-year-old hardware. Our finding
In 2006, Biere, Jussila, and Sinz made the key observation that the underlying logic behind algorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended resolution logical framework.
A new model for a cluster of hybrid sensors network with multi sub-clusters is proposed. The model is in particular relevant to the early warning system in a large scale monitoring system in, for example, a nuclear power plant. It mainly addresses to
Conflict-Based Search (CBS) is a powerful algorithmic framework for optimally solving classical multi-agent path finding (MAPF) problems, where time is discretized into the time steps. Continuous-time CBS (CCBS) is a recently proposed version of CBS
We present Woorpje, a string solver for bounded word equations (i.e., equations where the length of each variable is upper bounded by a given integer). Our algorithm works by reformulating the satisfiability of bounded word equations as a reachabilit