ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissonance Between Human and Machine Understanding

89   0   0.0 ( 0 )
 نشر من قبل Zijian Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Complex machine learning models are deployed in several critical domains including healthcare and autonomous vehicles nowadays, albeit as functional black boxes. Consequently, there has been a recent surge in interpreting decisions of such complex models in order to explain their actions to humans. Models that correspond to human interpretation of a task are more desirable in certain contexts and can help attribute liability, build trust, expose biases and in turn build better models. It is, therefore, crucial to understand how and which models conform to human understanding of tasks. In this paper, we present a large-scale crowdsourcing study that reveals and quantifies the dissonance between human and machine understanding, through the lens of an image classification task. In particular, we seek to answer the following questions: Which (well-performing) complex ML models are closer to humans in their use of features to make accurate predictions? How does task difficulty affect the feature selection capability of machines in comparison to humans? Are humans consistently better at selecting features that make image recognition more accurate? Our findings have important implications on human-machine collaboration, considering that a long term goal in the field of artificial intelligence is to make machines capable of learning and reasoning like humans.

قيم البحث

اقرأ أيضاً

Behavioral decision theories aim to explain human behavior. Can they help predict it? An open tournament for prediction of human choices in fundamental economic decision tasks is presented. The results suggest that integration of certain behavioral t heories as features in machine learning systems provides the best predictions. Surprisingly, the most useful theories for prediction build on basic properties of human and animal learning and are very different from mainstream decision theories that focus on deviations from rational choice. Moreover, we find that theoretical features should be based not only on qualitative behavioral insights (e.g. loss aversion), but also on quantitative behavioral foresights generated by functional descriptive models (e.g. Prospect Theory). Our analysis prescribes a recipe for derivation of explainable, useful predictions of human decisions.
Recent work has demonstrated the promise of combining local explanations with active learning for understanding and supervising black-box models. Here we show that, under specific conditions, these algorithms may misrepresent the quality of the model being learned. The reason is that the machine illustrates its beliefs by predicting and explaining the labels of the query instances: if the machine is unaware of its own mistakes, it may end up choosing queries on which it performs artificially well. This biases the narrative presented by the machine to the user.We address this narrative bias by introducing explanatory guided learning, a novel interactive learning strategy in which: i) the supervisor is in charge of choosing the query instances, while ii) the machine uses global explanations to illustrate its overall behavior and to guide the supervisor toward choosing challenging, informative instances. This strategy retains the key advantages of explanatory interaction while avoiding narrative bias and compares favorably to active learning in terms of sample complexity. An initial empirical evaluation with a clustering-based prototype highlights the promise of our approach.
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif icial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.
Language is crucial for human intelligence, but what exactly is its role? We take language to be a part of a system for understanding and communicating about situations. The human ability to understand and communicate about situations emerges gradual ly from experience and depends on domain-general principles of biological neural networks: connection-based learning, distributed representation, and context-sensitive, mutual constraint satisfaction-based processing. Current artificial language processing systems rely on the same domain general principles, embodied in artificial neural networks. Indeed, recent progress in this field depends on emph{query-based attention}, which extends the ability of these systems to exploit context and has contributed to remarkable breakthroughs. Nevertheless, most current models focus exclusively on language-internal tasks, limiting their ability to perform tasks that depend on understanding situations. These systems also lack memory for the contents of prior situations outside of a fixed contextual span. We describe the organization of the brains distributed understanding system, which includes a fast learning system that addresses the memory problem. We sketch a framework for future models of understanding drawing equally on cognitive neuroscience and artificial intelligence and exploiting query-based attention. We highlight relevant current directions and consider further developments needed to fully capture human-level language understanding in a computational system.
Deep neural networks (DNNs) show promise in image-based medical diagnosis, but cannot be fully trusted since their performance can be severely degraded by dataset shifts to which human perception remains invariant. If we can better understand the dif ferences between human and machine perception, we can potentially characterize and mitigate this effect. We therefore propose a framework for comparing human and machine perception in medical diagnosis. The two are compared with respect to their sensitivity to the removal of clinically meaningful information, and to the regions of an image deemed most suspicious. Drawing inspiration from the natural image domain, we frame both comparisons in terms of perturbation robustness. The novelty of our framework is that separate analyses are performed for subgroups with clinically meaningful differences. We argue that this is necessary in order to avert Simpsons paradox and draw correct conclusions. We demonstrate our framework with a case study in breast cancer screening, and reveal significant differences between radiologists and DNNs. We compare the two with respect to their robustness to Gaussian low-pass filtering, performing a subgroup analysis on microcalcifications and soft tissue lesions. For microcalcifications, DNNs use a separate set of high frequency components than radiologists, some of which lie outside the image regions considered most suspicious by radiologists. These features run the risk of being spurious, but if not, could represent potential new biomarkers. For soft tissue lesions, the divergence between radiologists and DNNs is even starker, with DNNs relying heavily on spurious high frequency components ignored by radiologists. Importantly, this deviation in soft tissue lesions was only observable through subgroup analysis, which highlights the importance of incorporating medical domain knowledge into our comparison framework.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا