ترغب بنشر مسار تعليمي؟ اضغط هنا

Extending Machine Language Models toward Human-Level Language Understanding

96   0   0.0 ( 0 )
 نشر من قبل Hinrich Sch\\\"utze
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Language is crucial for human intelligence, but what exactly is its role? We take language to be a part of a system for understanding and communicating about situations. The human ability to understand and communicate about situations emerges gradually from experience and depends on domain-general principles of biological neural networks: connection-based learning, distributed representation, and context-sensitive, mutual constraint satisfaction-based processing. Current artificial language processing systems rely on the same domain general principles, embodied in artificial neural networks. Indeed, recent progress in this field depends on emph{query-based attention}, which extends the ability of these systems to exploit context and has contributed to remarkable breakthroughs. Nevertheless, most current models focus exclusively on language-internal tasks, limiting their ability to perform tasks that depend on understanding situations. These systems also lack memory for the contents of prior situations outside of a fixed contextual span. We describe the organization of the brains distributed understanding system, which includes a fast learning system that addresses the memory problem. We sketch a framework for future models of understanding drawing equally on cognitive neuroscience and artificial intelligence and exploiting query-based attention. We highlight relevant current directions and consider further developments needed to fully capture human-level language understanding in a computational system.

قيم البحث

اقرأ أيضاً

We propose a sentence-level language model which selects the next sentence in a story from a finite set of fluent alternatives. Since it does not need to model fluency, the sentence-level language model can focus on longer range dependencies, which a re crucial for multi-sentence coherence. Rather than dealing with individual words, our method treats the story so far as a list of pre-trained sentence embeddings and predicts an embedding for the next sentence, which is more efficient than predicting word embeddings. Notably this allows us to consider a large number of candidates for the next sentence during training. We demonstrate the effectiveness of our approach with state-of-the-art accuracy on the unsupervised Story Cloze task and with promising results on larger-scale next sentence prediction tasks.
As machine learning methods are deployed in real-world settings such as healthcare, legal systems, and social science, it is crucial to recognize how they shape social biases and stereotypes in these sensitive decision-making processes. Among such re al-world deployments are large-scale pretrained language models (LMs) that can be potentially dangerous in manifesting undesirable representational biases - harmful biases resulting from stereotyping that propagate negative generalizations involving gender, race, religion, and other social constructs. As a step towards improving the fairness of LMs, we carefully define several sources of representational biases before proposing new benchmarks and metrics to measure them. With these tools, we propose steps towards mitigating social biases during text generation. Our empirical results and human evaluation demonstrate effectiveness in mitigating bias while retaining crucial contextual information for high-fidelity text generation, thereby pushing forward the performance-fairness Pareto frontier.
Negation is a core construction in natural language. Despite being very successful on many tasks, state-of-the-art pre-trained language models often handle negation incorrectly. To improve language models in this regard, we propose to augment the lan guage modeling objective with an unlikelihood objective that is based on negated generic sentences from a raw text corpus. By training BERT with the resulting combined objective we reduce the mean top~1 error rate to 4% on the negated LAMA dataset. We also see some improvements on the negated NLI benchmarks.
Present language understanding methods have demonstrated extraordinary ability of recognizing patterns in texts via machine learning. However, existing methods indiscriminately use the recognized patterns in the testing phase that is inherently diffe rent from us humans who have counterfactual thinking, e.g., to scrutinize for the hard testing samples. Inspired by this, we propose a Counterfactual Reasoning Model, which mimics the counterfactual thinking by learning from few counterfactual samples. In particular, we devise a generation module to generate representative counterfactual samples for each factual sample, and a retrospective module to retrospect the model prediction by comparing the counterfactual and factual samples. Extensive experiments on sentiment analysis (SA) and natural language inference (NLI) validate the effectiveness of our method.
Different flavors of transfer learning have shown tremendous impact in advancing research and applications of machine learning. In this work we study the use of a specific family of transfer learning, where the target domain is mapped to the source d omain. Specifically we map Natural Language Understanding (NLU) problems to QuestionAnswering (QA) problems and we show that in low data regimes this approach offers significant improvements compared to other approaches to NLU. Moreover we show that these gains could be increased through sequential transfer learning across NLU problems from different domains. We show that our approach could reduce the amount of required data for the same performance by up to a factor of 10.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا