ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward Machine-Guided, Human-Initiated Explanatory Interactive Learning

170   0   0.0 ( 0 )
 نشر من قبل Mohit Kumar
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has demonstrated the promise of combining local explanations with active learning for understanding and supervising black-box models. Here we show that, under specific conditions, these algorithms may misrepresent the quality of the model being learned. The reason is that the machine illustrates its beliefs by predicting and explaining the labels of the query instances: if the machine is unaware of its own mistakes, it may end up choosing queries on which it performs artificially well. This biases the narrative presented by the machine to the user.We address this narrative bias by introducing explanatory guided learning, a novel interactive learning strategy in which: i) the supervisor is in charge of choosing the query instances, while ii) the machine uses global explanations to illustrate its overall behavior and to guide the supervisor toward choosing challenging, informative instances. This strategy retains the key advantages of explanatory interaction while avoiding narrative bias and compares favorably to active learning in terms of sample complexity. An initial empirical evaluation with a clustering-based prototype highlights the promise of our approach.



قيم البحث

اقرأ أيضاً

145 - Joseph Scott , Maysum Panju , 2020
We introduce Logic Guided Machine Learning (LGML), a novel approach that symbiotically combines machine learning (ML) and logic solvers with the goal of learning mathematical functions from data. LGML consists of two phases, namely a learning-phase a nd a logic-phase with a corrective feedback loop, such that, the learning-phase learns symbolic expressions from input data, and the logic-phase cross verifies the consistency of the learned expression with known auxiliary truths. If inconsistent, the logic-phase feeds back counterexamples to the learning-phase. This process is repeated until the learned expression is consistent with auxiliary truth. Using LGML, we were able to learn expressions that correspond to the Pythagorean theorem and the sine function, with several orders of magnitude improvements in data efficiency compared to an approach based on an out-of-the-box multi-layered perceptron (MLP).
The purpose of this paper is to examine the opportunities and barriers of Integrated Human-Machine Intelligence (IHMI) in civil engineering. Integrating artificial intelligences high efficiency and repeatability with humans adaptability in various co ntexts can advance timely and reliable decision-making during civil engineering projects and emergencies. Successful cases in other domains, such as biomedical science, healthcare, and transportation, showed the potential of IHMI in data-driven, knowledge-based decision-making in numerous civil engineering applications. However, whether the industry and academia are ready to embrace the era of IHMI and maximize its benefit to the industry is still questionable due to several knowledge gaps. This paper thus calls for future studies in exploring the value, method, and challenges of applying IHMI in civil engineering. Our systematic review of the literature and motivating cases has identified four knowledge gaps in achieving effective IHMI in civil engineering. First, it is unknown what types of tasks in the civil engineering domain can be assisted by AI and to what extent. Second, the interface between human and AI in civil engineering-related tasks need more precise and formal definition. Third, the barriers that impede collecting detailed behavioral data from humans and contextual environments deserve systematic classification and prototyping. Lastly, it is unknown what expected and unexpected impacts will IHMI have on the AEC industry and entrepreneurship. Analyzing these knowledge gaps led to a list of identified research questions. This paper will lay the foundation for identifying relevant studies to form a research roadmap to address the four knowledge gaps identified.
Behavioral decision theories aim to explain human behavior. Can they help predict it? An open tournament for prediction of human choices in fundamental economic decision tasks is presented. The results suggest that integration of certain behavioral t heories as features in machine learning systems provides the best predictions. Surprisingly, the most useful theories for prediction build on basic properties of human and animal learning and are very different from mainstream decision theories that focus on deviations from rational choice. Moreover, we find that theoretical features should be based not only on qualitative behavioral insights (e.g. loss aversion), but also on quantitative behavioral foresights generated by functional descriptive models (e.g. Prospect Theory). Our analysis prescribes a recipe for derivation of explainable, useful predictions of human decisions.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make mac hine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.
Complex machine learning models are deployed in several critical domains including healthcare and autonomous vehicles nowadays, albeit as functional black boxes. Consequently, there has been a recent surge in interpreting decisions of such complex mo dels in order to explain their actions to humans. Models that correspond to human interpretation of a task are more desirable in certain contexts and can help attribute liability, build trust, expose biases and in turn build better models. It is, therefore, crucial to understand how and which models conform to human understanding of tasks. In this paper, we present a large-scale crowdsourcing study that reveals and quantifies the dissonance between human and machine understanding, through the lens of an image classification task. In particular, we seek to answer the following questions: Which (well-performing) complex ML models are closer to humans in their use of features to make accurate predictions? How does task difficulty affect the feature selection capability of machines in comparison to humans? Are humans consistently better at selecting features that make image recognition more accurate? Our findings have important implications on human-machine collaboration, considering that a long term goal in the field of artificial intelligence is to make machines capable of learning and reasoning like humans.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا