ﻻ يوجد ملخص باللغة العربية
The Norton product is defined on each eigenspace of a distance regular graph by the orthogonal projection of the entry-wise product. The resulting algebra, known as the Norton algebra, is a commutative nonassociative algebra that is useful in group theory due to its interesting automorphism group. We provide a formula for the Norton product on each eigenspace of a Hamming graph using linear characters. We construct a large subgroup of automorphisms of the Norton algebra of a Hamming graph and completely describe the automorphism group in some cases. We also show that the Norton product on each eigenspace of a Hamming graph is as nonassociative as possible, except for some special cases in which it is either associative or equally as nonassociative as the so-called double minus operation previously studied by the author, Mickey, and Xu. Our results restrict to the hypercubes and extend to the halved and/or folded cubes, the bilinear forms graphs, and more generally, all Cayley graphs of finite abelian groups.
A Norton algebra is an eigenspace of a distance regular graph endowed with a commutative nonassociative product called the Norton product, which is defined as the projection of the entrywise product onto this eigenspace. The Norton algebras are usefu
$H_q(n,d)$ is defined as the graph with vertex set ${mathbb Z}_q^n$ and where two vertices are adjacent if their Hamming distance is at least $d$. The chromatic number of these graphs is presented for various sets of parameters $(q,n,d)$. For the $4$
In this paper we give the relationship between the connected components of pure generalized Dynkin graphs and Nichols braided Lie algebras.
Following Britz, Johnsen, Mayhew and Shiromoto, we consider demi-ma-troids as a(nother) natural generalization of matroids. As they have shown, demi-ma-troids are the appropriate combinatorial objects for studying Weis duality. Our results here appor
A $k$-linear coloring of a graph $G$ is an edge coloring of $G$ with $k$ colors so that each color class forms a linear forest -- a forest whose each connected component is a path. The linear arboricity $chi_l(G)$ of $G$ is the minimum integer $k$ su