ترغب بنشر مسار تعليمي؟ اضغط هنا

The relationship between graphs and Nichols braided Lie algebras

136   0   0.0 ( 0 )
 نشر من قبل Shouchuan Zhang
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we give the relationship between the connected components of pure generalized Dynkin graphs and Nichols braided Lie algebras.



قيم البحث

اقرأ أيضاً

We establish the relationship among Nichols algebras, Nichols braided Lie algebras and Nichols Lie algebras. We prove two results: (i) Nichols algebra $mathfrak B(V)$ is finite-dimensional if and only if Nichols braided Lie algebra $mathfrak L(V)$ is finite-dimensional if there does not exist any $m$-infinity element in $mathfrak B(V)$; (ii) Nichols Lie algebra $mathfrak L^-(V)$ is infinite dimensional if $ D^-$ is infinite. We give the sufficient conditions for Nichols braided Lie algebra $mathfrak L(V)$ to be a homomorphic image of a braided Lie algebra generated by $V$ with defining relations.
It is shown that if $mathfrak B(V) $ is connected Nichols algebra of diagonal type with $dim V>1$, then $dim (mathfrak L^-(V)) = infty$ $($resp. $ dim (mathfrak L(V)) = infty $$)$ $($ resp. $ dim (mathfrak B(V)) = infty $$)$ if and only if $Delta(mat hfrak B(V)) $ is an arithmetic root system and the quantum numbers (i.e. the fixed parameters) of generalized Dynkin diagrams of $V$ are of finite order. Sufficient and necessary conditions for $m$-fold adjoint action in $mathfrak B(V)$ equal to zero, viz. $overline{l}_{x_{i}}^{m}[x_{j}]^ -=0$ for $x_i,~x_jin mathfrak B(V)$, are given.
We prove {rm (i)} Nichols algebra $mathfrak B(V)$ of vector space $V$ is finite-dimensional if and only if Nichols braided Lie algebra $mathfrak L(V)$ is finite-dimensional; {rm (ii)} If the rank of connected $V$ is $2$ and $mathfrak B(V)$ is an arit hmetic root system, then $mathfrak B(V) = F oplus mathfrak L(V);$ and {rm (iii)} if $Delta (mathfrak B(V))$ is an arithmetic root system and there does not exist any $m$-infinity element with $p_{uu} ot= 1$ for any $u in D(V)$, then $dim (mathfrak B(V) ) = infty$ if and only if there exists $V$, which is twisting equivalent to $V$, such that $ dim (mathfrak L^ - (V)) = infty.$ Furthermore we give an estimation of dimensions of Nichols Lie algebras and two examples of Lie algebras which do not have maximal solvable ideals.
Assume that $V$ is a braided vector space with diagonal type. It is shown that a monomial belongs to Nichols braided Lie algebra $mathfrak L(V)$ if and only if this monomial is connected. A basis of Nichols braided Lie algebra and dimension of Nichol s braided Lie algebra of finite Cartan type are obtained.
Let $V$ be a braided vector space of diagonal type. Let $mathfrak B(V)$, $mathfrak L^-(V)$ and $mathfrak L(V)$ be the Nichols algebra, Nichols Lie algebra and Nichols braided Lie algebra over $V$, respectively. We show that a monomial belongs to $mat hfrak L(V)$ if and only if that this monomial is connected. We obtain the basis for $mathfrak L(V)$ of arithmetic root systems and the dimension for $mathfrak L(V)$ of finite Cartan type. We give the sufficient and necessary conditions for $mathfrak B(V) = Foplus mathfrak L^-(V)$ and $mathfrak L^-(V)= mathfrak L(V)$. We obtain an explicit basis of $mathfrak L^ - (V)$ over quantum linear space $V$ with $dim V=2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا