ﻻ يوجد ملخص باللغة العربية
$H_q(n,d)$ is defined as the graph with vertex set ${mathbb Z}_q^n$ and where two vertices are adjacent if their Hamming distance is at least $d$. The chromatic number of these graphs is presented for various sets of parameters $(q,n,d)$. For the $4$-colorings of the graphs $H_2(n,n-1)$ a notion of robustness is introduced. It is based on the tolerance of swapping colors along an edge without destroying properness of the coloring. An explicit description of the maximally robust $4$-colorings of $H_2(n,n-1)$ is presented.
Barnette identified two interesting classes of cubic polyhedral graphs for which he conjectured the existence of a Hamiltonian cycle. Goodey proved the conjecture for the intersection of the two classes. We examine these classes from the point of vie
A proper edge-coloring of a graph $G$ with colors $1,ldots,t$ is called an emph{interval cyclic $t$-coloring} if all colors are used, and the edges incident to each vertex $vin V(G)$ are colored by $d_{G}(v)$ consecutive colors modulo $t$, where $d_{
An edge-coloring of a graph $G$ with consecutive integers $c_{1},ldots,c_{t}$ is called an emph{interval $t$-coloring} if all colors are used, and the colors of edges incident to any vertex of $G$ are distinct and form an interval of integers. A grap
We show that any proper coloring of a Kneser graph $KG_{n,k}$ with $n-2k+2$ colors contains a trivial color (i.e., a color consisting of sets that all contain a fixed element), provided $n>(2+epsilon)k^2$, where $epsilonto 0$ as $kto infty$. This bound is essentially tight.
A total coloring of a graph $G$ is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. An interval total $t$-coloring of a graph $G$ is a total coloring of $G$ with col