ﻻ يوجد ملخص باللغة العربية
A $k$-linear coloring of a graph $G$ is an edge coloring of $G$ with $k$ colors so that each color class forms a linear forest -- a forest whose each connected component is a path. The linear arboricity $chi_l(G)$ of $G$ is the minimum integer $k$ such that there exists a $k$-linear coloring of $G$. Akiyama, Exoo and Harary conjectured in 1980 that for every graph $G$, $chi_l(G)leq left lceil frac{Delta(G)+1}{2}rightrceil$ where $Delta(G)$ is the maximum degree of $G$. First, we prove the conjecture for 3-degenerate graphs. This establishes the conjecture for graphs of treewidth at most 3 and provides an alternative proof for the conjecture in some classes of graphs like cubic graphs and triangle-free planar graphs for which the conjecture was already known to be true. Next, for every 2-degenerate graph $G$, we show that $chi_l(G)=leftlceilfrac{Delta(G)}{2}rightrceil$ if $Delta(G)geq 5$. We conjecture that this equality holds also when $Delta(G)in{3,4}$ and show that this is the case for some well-known subclasses of 2-degenerate graphs. All our proofs can be converted into linear time algorithms.
We prove an inequality involving the degeneracy, the cutwidth and the sparsity of graphs. It implies a quadratic lower bound on the cutwidth in terms of the degeneracy for all graphs and an improvement of it for clique-free graphs.
Tuza famously conjectured in 1981 that in a graph without k+1 edge-disjoint triangles, it suffices to delete at most 2k edges to obtain a triangle-free graph. The conjecture holds for graphs with small treewidth or small maximum average degree, inclu
Arboricity is a graph parameter akin to chromatic number, in that it seeks to partition the vertices into the smallest number of sparse subgraphs. Where for the chromatic number we are partitioning the vertices into independent sets, for the arborici
We initiate a systematic study of the fractional vertex-arboricity of planar graphs and demonstrate connections to open problems concerning both fractional coloring and the size of the largest induced forest in planar graphs. In particular, the follo
Tuza (1981) conjectured that the size $tau(G)$ of a minimum set of edges that intersects every triangle of a graph $G$ is at most twice the size $ u(G)$ of a maximum set of edge-disjoint triangles of $G$. In this paper we present three results regard