ﻻ يوجد ملخص باللغة العربية
In this paper, we derive second order hydrodynamic traffic models from kinetic-controlled equations for driver-assist vehicles. At the vehicle level we take into account two main control strategies synthesising the action of adaptive cruise controls and cooperative adaptive cruise controls. The resulting macroscopic dynamics fulfil the anisotropy condition introduced in the celebrated Aw-Rascle-Zhang model. Unlike other models based on heuristic arguments, our approach unveils the main physical aspects behind frequently used hydrodynamic traffic models and justifies the structure of the resulting macroscopic equations incorporating driver-assist vehicles. Numerical insights show that the presence of driver-assist vehicles produces an aggregate homogenisation of the mean flow speed, which may also be steered towards a suitable desired speed in such a way that optimal flows and traffic stabilisation are reached.
We study the derivation of generic high order macroscopic traffic models from a follow-the-leader particle description via a kinetic approach. First, we recover a third order traffic model as the hydrodynamic limit of an Enskog-type kinetic equation.
We show that d+1-dimensional surface growth models can be mapped onto driven lattice gases of d-mers. The continuous surface growth corresponds to one dimensional drift of d-mers perpendicular to the (d-1)-dimensional plane spanned by the d-mers. Thi
In quantum mechanics it is often required to describe in a semiclassical approximation the motion of particles moving within a given energy band. Such a representation leads to the appearance of an analogues of fictitious forces in the semiclassical
We derive diffusive macroscopic equations for the particle and energy density of a system whose time evolution is described by a kinetic equation for the one particle position and velocity function f(r,v,t) that consists of a part that conserves ener
We propose a model to implement and simulate different traffic-flow conditions in terms of quantum graphs hosting an ($N$+1)-level dot at each site, which allows us to keep track of the type and of the destination of each vehicle. By implementing pro