ﻻ يوجد ملخص باللغة العربية
We show that d+1-dimensional surface growth models can be mapped onto driven lattice gases of d-mers. The continuous surface growth corresponds to one dimensional drift of d-mers perpendicular to the (d-1)-dimensional plane spanned by the d-mers. This facilitates efficient, bit-coded algorithms with generalized Kawasaki dynamics of spins. Our simulations in d=2,3,4,5 dimensions provide scaling exponent estimates on much larger system sizes and simulations times published so far, where the effective growth exponent exhibits an increase. We provide evidence for the agreement with field theoretical predictions of the Kardar-Parisi-Zhang universality class and numerical results. We show that the (2+1)-dimensional exponents conciliate with the values suggested by Lassig within error margin, for the largest system sizes studied here, but we cant support his predictions for (3+1)d numerically.
We show that a 2+1 dimensional discrete surface growth model exhibiting Kardar-Parisi-Zhang (KPZ) class scaling can be mapped onto a two dimensional conserved lattice gas model of directed dimers. In case of KPZ height anisotropy the dimers follow dr
The roughening of interfaces moving in inhomogeneous media is investigated by numerical integration of the phenomenological stochastic differential equation proposed by Kardar, Parisi, and Zhang [Phys. Rev. Lett. 56, 889, (1986)] with quenched noise
Surface growth governed by the Kardar-Parisi-Zhang (KPZ) equation in dimensions higher than two undergoes a roughening transition from smooth to rough phases with increasing the nonlinearity. It is also known that the KPZ equation can be mapped onto
We study the dynamics of vortices in a two-dimensional, non-equilibrium system, described by the compact Kardar-Parisi-Zhang equation, after a sudden quench across the critical region. Our exact numerical solution of the phase-ordering kinetics shows
Circular KPZ interfaces spreading radially in the plane have GUE Tracy-Widom (TW) height distribution (HD) and Airy$_2$ spatial covariance, but what are their statistics if they evolve on the surface of a different background space, such as a bowl, a