ﻻ يوجد ملخص باللغة العربية
We derive diffusive macroscopic equations for the particle and energy density of a system whose time evolution is described by a kinetic equation for the one particle position and velocity function f(r,v,t) that consists of a part that conserves energy and momentum such as the Boltzmann equation and an external randomization of the particle velocity directions that breaks the momentum conservation. Rescaling space and time by epsilon and epsilon square respectively and carrying out a Hilbert expansion in epsilon around a local equilibrium Maxwellian yields coupled diffusion equations with specified Onsager coefficients for the particle and energy density. Our analysis includes a system of hard disks at intermediate densities by using the Enskog equation for the collision kernel.
We describe results of computer simulations of steady state heat transport in a fluid of hard discs undergoing both elastic interparticle collisions and velocity randomizing collisions which do not conserve momentum. The system consists of N discs of
We propose a modified voter model with locally conserved magnetization and investigate its phase ordering dynamics in two dimensions in numerical simulations. Imposing a local constraint on the dynamics has the surprising effect of speeding up the ph
A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function
Conserved lattice gas (CLG) models in one dimension exhibit absorbing state phase transition (APT) with simple integer exponents $beta=1= u=eta$ whereas the same on a ladder belong to directed percolation (DP)universality. We conjecture that addition
We make a brief historical review to the moment model reduction to the kinetic equations, particularly the Grads moment method for Boltzmann equation. The focus is on the hyperbolicity of the reduced model, which is essential to the existence of its