ﻻ يوجد ملخص باللغة العربية
In quantum mechanics it is often required to describe in a semiclassical approximation the motion of particles moving within a given energy band. Such a representation leads to the appearance of an analogues of fictitious forces in the semiclassical equations of motion associated with the Berry curvature. The purpose of this paper is to derive systematically the kinetic Boltzmann equations displaying these effects in the case that the band is degenerate, and as such the Berry curvature is non-Abelian. We use the formalism of phase-space quantum mechanics to derive the results.
Recently Mazenko and Das and Mazenko introduced a non-equilibrium field theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use
We report the study of a new experimental granular Brownian motor, inspired to the one published in [Phys. Rev. Lett. 104, 248001 (2010)], but different in some ingredients. As in that previous work, the motor is constituted by a rotating pawl whose
We show that the kinetic theory of quantum and classical Calogero particles reduces to the free-particle Boltzmann equation. We reconcile this simple emergent behaviour with the strongly interacting character of the model by developing a Bethe-Lax co
The effect of quenched (frozen) orientational disorder on the collective motion of active particles is analyzed. We find that, as with annealed disorder (Langevin noise), active polar systems are far more robust against quenched disorder than their e
We study quantum transport after an inhomogeneous quantum quench in a free fermion lattice system in the presence of a localised defect. Using a new rigorous analytical approach for the calculation of large time and distance asymptotics of physical o