ﻻ يوجد ملخص باللغة العربية
False vacuum decay in field theory may be formulated as a boundary value problem in Euclidean space. In a previous work, we studied its solution in single scalar field theories with quadratic gravity and used it to find obstructions to vacuum decay. For simplicity, we focused on massless scalar fields and false vacua with a flat geometry. In this paper, we generalize those findings to massive scalar fields with the same gravitational interactions, namely an Einstein-Hilbert term, a quadratic Ricci scalar, and a non-minimal coupling. We find that the scalar field reaches its asymptotic value faster than in the massless case, in principle allowing for a wider range of theories that may accommodate vacuum decay. Nonetheless, this hardly affects the viability of the bounce in the scenarios here considered. We also briefly consider other physically interesting theories by including higher-order kinetic terms and changing the number of spacetime dimensions.
Metastable states decay at zero temperature through quantum tunneling at an exponentially small rate, which depends on the Coleman-de Luccia instanton, also known as bounce. In some theories, the bounce may not exist or its on-shell action may be ill
We study static, spherically symmetric vacuum solutions to Quadratic Gravity, extending considerably our previous Rapid Communication [Phys. Rev. D 98, 021502(R) (2018)] on this topic. Using a conformal-to-Kundt metric ansatz, we arrive at a much sim
We consider a finite-size spherical bubble with a nonequilibrium value of the $q$-field, where the bubble is immersed in an infinite vacuum with the constant equilibrium value $q_{0}$ for the $q$-field (this $q_{0}$ has already cancelled an initial c
Following recent works on corner charges we investigate the boundary structure in the case of the theory of gravity formulated as a constrained BF theory. This allows us not only to introduce the cosmological constant, but also explore the influence
A universal relation between the leading correction to the entropy and extremality was gotten in the work of Goon and Penco. In this paper, we extend this work to the massive gravity and investigate thermodynamic extremality relations in a topologica