ﻻ يوجد ملخص باللغة العربية
Metastable states decay at zero temperature through quantum tunneling at an exponentially small rate, which depends on the Coleman-de Luccia instanton, also known as bounce. In some theories, the bounce may not exist or its on-shell action may be ill-defined or infinite, thus hindering the vacuum decay process. In this paper, we test this possibility in modified theories of gravity interacting with a real scalar field. We consider an Einstein-Hilbert term with a non-minimally coupled scalar field and a quadratic Ricci scalar contribution. To tackle the problem we use a new analytic method, with which we prove that the scalar field on the bounce has a universal behavior at large Euclidean radii, almost independently of the potential. Our main result is that the quadratic Ricci scalar prevents the decay, regardless of the other terms in the action. We also comment on the numerical implications of our findings.
False vacuum decay in field theory may be formulated as a boundary value problem in Euclidean space. In a previous work, we studied its solution in single scalar field theories with quadratic gravity and used it to find obstructions to vacuum decay.
We study static, spherically symmetric vacuum solutions to Quadratic Gravity, extending considerably our previous Rapid Communication [Phys. Rev. D 98, 021502(R) (2018)] on this topic. Using a conformal-to-Kundt metric ansatz, we arrive at a much sim
We consider a finite-size spherical bubble with a nonequilibrium value of the $q$-field, where the bubble is immersed in an infinite vacuum with the constant equilibrium value $q_{0}$ for the $q$-field (this $q_{0}$ has already cancelled an initial c
We show that the Plebanski-Demianski spacetime persists as a solution of General Relativity when the theory is supplemented with both, a conformally coupled scalar theory and with quadratic curvature corrections. The quadratic terms are of two types
We study a false vacuum decay in a two-dimensional black hole spacetime background. The decay rate in the case that nucleation site locates at a black hole center has been calculated in the literature. We develop a method for calculating the decay ra