ﻻ يوجد ملخص باللغة العربية
We study static, spherically symmetric vacuum solutions to Quadratic Gravity, extending considerably our previous Rapid Communication [Phys. Rev. D 98, 021502(R) (2018)] on this topic. Using a conformal-to-Kundt metric ansatz, we arrive at a much simpler form of the field equations in comparison with their expression in the standard spherically symmetric coordinates. We present details of the derivation of this compact form of two ordinary differential field equations for two metric functions. Next, we apply analytical methods and express their solutions as infinite power series expansions. We systematically derive all possible cases admitted by such an ansatz, arriving at six main classes of solutions, and provide recurrent formulas for all the series coefficients. These results allow us to identify the classes containing the Schwarzschild black hole as a special case. It turns out that one class contains only the Schwarzschild black hole, three classes admit the Schwarzschild solution as a special subcase, and two classes are not compatible with the Schwarzschild solution at all since they have strictly nonzero Bach tensor. In our analysis, we naturally focus on the classes containing the Schwarzschild spacetime, in particular on a new family of the Schwarzschild-Bach black holes which possesses one additional non-Schwarzschild parameter corresponding to the value of the Bach tensor invariant on the horizon. We study its geometrical and physical properties, such as basic thermodynamical quantities and tidal effects on free test particles induced by the presence of the Bach tensor. We also compare our results with previous findings in the literature obtained using the standard spherically symmetric coordinates.
Black holes in $f(R)$-gravity are known to be unstable, especially the rotating ones. In particular, an instability develops that looks like the classical black hole bomb mechanism: the linearized modified Einstein equations are characterized by an e
We investigate the solutions of black holes in $f(T)$ gravity with nonlinear power-law Maxwell field, where $T$ is the torsion scalar in teleparalelism. In particular, we introduce the Langranian with diverse dimensions in which the quadratic polynom
Black hole solutions in pure quadratic theories of gravity are interesting since they allow to formulate a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which
In this work, we consider that in energy scales greater than the Planck energy, the geometry, fundamental physical constants, as charge, mass, speed of light and Newtonian constant of gravitation, and matter fields will depend on the scale. This type
We analyse the classical configurations of a bootstrapped Newtonian potential generated by homogeneous spherically symmetric sources in terms of a quantum coherent state. We first compute how the mass and mean wavelength of these solutions scale in t