ترغب بنشر مسار تعليمي؟ اضغط هنا

Nash Equilibrium Seeking for High-order Multi-agent Systems with Unknown Dynamics

193   0   0.0 ( 0 )
 نشر من قبل Yutao Tang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider a Nash equilibrium seeking problem for a class of high-order multi-agent systems with unknown dynamics. Different from existing results for single integrators, we aim to steer the outputs of this class of uncertain high-order agents to the Nash equilibrium of some noncooperative game in a distributed manner. To overcome the difficulties brought by the high-order structure, unknown nonlinearities, and the regulation requirement, we first introduce a virtual player for each agent and solve an auxiliary noncooperative game for them. Then, we develop a distributed adaptive protocol by embedding this auxiliary game dynamics into some proper tracking controller for the original agent to resolve this problem. We also discuss the parameter convergence problem under certain persistence of excitation condition. The efficacy of our algorithms is verified by numerical examples.



قيم البحث

اقرأ أيضاً

In this paper we consider the problem of finding a Nash equilibrium (NE) via zeroth-order feedback information in games with merely monotone pseudogradient mapping. Based on hybrid system theory, we propose a novel extremum seeking algorithm which co nverges to the set of Nash equilibria in a semi-global practical sense. Finally, we present two simulation examples. The first shows that the standard extremum seeking algorithm fails, while ours succeeds in reaching NE. In the second, we simulate an allocation problem with fixed demand.
With the proliferation of distributed generators and energy storage systems, traditional passive consumers in power systems have been gradually evolving into the so-called prosumers, i.e., proactive consumers, which can both produce and consume power . To encourage energy exchange among prosumers, energy sharing is increasingly adopted, which is usually formulated as a generalized Nash game (GNG). In this paper, a distributed approach is proposed to seek the Generalized Nash equilibrium (GNE) of the energy sharing game. To this end, we convert the GNG into an equivalent optimization problem. A Krasnoselski{v{i}}-Mann iteration type algorithm is thereby devised to solve the problem and consequently find the GNE in a distributed manner. The convergence of the proposed algorithm is proved rigorously based on the nonexpansive operator theory. The performance of the algorithm is validated by experiments with three prosumers, and the scalability is tested by simulations using 123 prosumers.
157 - Yutao Tang 2020
This paper investigates an optimal consensus problem for a group of uncertain linear multi-agent systems. All agents are allowed to possess parametric uncertainties that range over an arbitrarily large compact set. The goal is to collectively minimiz e a sum of local costs in a distributed fashion and finally achieve an output consensus on this optimal point using only output information of agents. By adding an optimal signal generator to generate the global optimal point, we convert this problem to several decentralized robust tracking problems. Output feedback integral control is constructively given to achieve an optimal consensus under a mild graph connectivity condition. The efficacy of this control is verified by a numerical example.
237 - Yutao Tang , Hao Zhu , Xiaoyong Lv 2020
In this paper, an optimal output consensus problem is studied for discrete-time linear multiagent systems subject to external disturbances. Each agent is assigned with a local cost function which is known only to itself. Distributed protocols are to be designed to guarantee an output consensus for these high-order agents and meanwhile minimize the aggregate cost as the sum of these local costs. To overcome the difficulties brought by high-order dynamics and external disturbances, we develop an embedded design and constructively present a distributed rule to solve this problem. The proposed control includes three terms: an optimal signal generator under a directed information graph, an observer-based compensator to reject these disturbances, and a reference tracking controller for these linear agents. It is shown to solve the formulated problem with some mild assumptions. A numerical example is also provided to illustrate the effectiveness of our proposed distributed control laws.
In this paper, a distributed learning leader-follower consensus protocol based on Gaussian process regression for a class of nonlinear multi-agent systems with unknown dynamics is designed. We propose a distributed learning approach to predict the re sidual dynamics for each agent. The stability of the consensus protocol using the data-driven model of the dynamics is shown via Lyapunov analysis. The followers ultimately synchronize to the leader with guaranteed error bounds by applying the proposed control law with a high probability. The effectiveness and the applicability of the developed protocol are demonstrated by simulation examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا