ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchrotron x-ray diffraction studies of the $alpha rightleftharpoons beta$ structural phase transition in Sn and Sn-Cu

89   0   0.0 ( 0 )
 نشر من قبل Aparajita Mazumdar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transformation between the metallic ($beta$) and semi-conducting ($alpha$) allotropes of tin is still not well understood. The phase transition temperature stated in the literature, 286.2 K, seems to be inconsistent with recent calorimetric measurements. In this paper, this intriguing aspect has been explored in Sn and Sn-Cu (alloyed 0.5% Cu by weight) using temperature resolved synchrotron x-ray diffraction measurements performed at the Indus-2 facility. Additionally, the $alpha rightleftharpoons beta$ Sn transition has been recorded using in-situ heating/cooling experiments in a scanning electron microscope. Based on these measurements, a protocol has been suggested to reduce the formation of $alpha$-Sn in potentially susceptible systems. This will be useful in experiments like TIN.TIN (The INdia-based TIN detector), which proposes to employ ~100 - 1000 kg of superconducting tin-based detectors to search for neutrinoless double beta decay in the isotope $^{124}$Sn.



قيم البحث

اقرأ أيضاً

We present an investigation of the near-surface tetragonal phase transition in SrTiO3, using the complementary techniques of beta-detected nuclear magnetic resonance and grazing-incidence X-ray diffraction. The results show a clear depth dependence o f the phase transition on scales of a few microns. The measurements support a model in which there are tetragonal domains forming in the sample at temperatures much higher than the bulk phase transition temperature. Moreover, we find that these domains tend to form at higher temperatures preferentially near the free surface of the crystal. The details of the tetragonal domain formation and their depth/lateral dependencies are discussed.
We report a structural transition found in Ca10(Ir4As8)(Fe2-xIrxAs2)5, which exhibits superconductivity at 16 K. The c-axis parameter is doubled below a structural transition temperature of approximately 100 K, while the tetragonal symmetry with spac e group P4/n (No.85) is unchanged at all temperatures measured. Our synchrotron x-ray diffraction study clearly shows iridium ions at a non-coplanar position shift along the z-direction at the structural phase transition. We discuss that the iridium displacements affect superconductivity in Fe2As2 layers.
The study of the Cu-Sn-In ternary system has become of great importance in recent years, due to new environmental regulations forcing to eliminate the use of Pb in bonding technologies for electronic devices. A key relevant issue concerns the interme tallic phases which grow in the bonding zone and are determining in their quality and performance. In this work, we focus in the {eta}-phase (Cu2In or Cu6Sn5) that exists in both end binaries and as a ternary phase. We present a neutron diffraction study of the constitution and crystallography of a series of alloys around the 60 at.% Cu composition, and with In contents ranging from 0 to 25 at.%, quenched from 300degreeC. The alloys were characterized by scanning electron microscopy, probe microanalysis and high-resolution neutron diffraction. The Rietveld refinement of neutron diffraction data allowed to improve the currently available model for site occupancies in the hexagonal {eta}-phase in the binary Cu-Sn as well as in ternary alloys. For the first time, structural data is reported in the ternary Cu-Sn-In {eta}-phase as a function of composition, information that is of fundamental technological importance as well as valuable input data for ongoing modelisations of the ternary phase diagram.
Gray tin, also known as $alpha$-Sn, can be turned into a three-dimensional topological insulator (3D-TI) by strain and finite size effects. Such room temperature 3D-TI is peculiarly interesting for spintronics due to the spin-momentum locking along t he Dirac cone (linear dispersion) of the surface states. Angle resolved photoemission spectroscopy (ARPES) has been used to investigate the dispersion close to the Fermi level in thin (0,0,1)-oriented epitaxially strained films of $alpha$-Sn, for different film thicknesses as well as for different capping layers (Al, AlO$_x$ and MgO). Indeed a proper capping layer is necessary to be able to use $alpha$-Sn surface states for spintronics applications. In contrast with free surfaces or surfaces coated with Ag, coating the $alpha$-Sn surface with Al or AlO$_x$ leads to a drop of the Fermi level below the Dirac point, an important consequence for transport is the presence of bulk states at the Fermi level. $alpha$-Sn films coated by AlO$_x$ are studied by electrical magnetotransport: despite clear evidence of surface states revealed by Shubnikov-de Haas oscillations, an important part of the magneto-transport properties is governed by bulk electronic states attributed to the $Gamma 8$ band, as suggested by {it ab-initio} calculations.
In the quest of understanding significant variations in the physical, chemical and electronic properties of the novel functional materials, low temperature Synchrotron X-ray Diffraction (LT-SXRD) measurements on CTO (a type-II) and CMTO (a type-I) mu ltiferroics are presented. Magnetic phase diagram of CTO shows multiple magnetic transitions at zero fields, whereas, in CMTO, 20 K enhancement in the antiferromagnetic transition temperature is observed followed by near room temperature Griffiths phase. Rietveld analysis on LT-SXRD data of both the samples indicates important observations. For both CTO and CMTO, the magnetic anomalies are followed by structural anomalies, which is a clear signature of spin lattice coupling and the positive shift of spin lattice coupling from CTO to CMTO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا