ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystal structure of Cu-Sn-In alloys around the {eta} phase field studied by neutron diffraction

55   0   0.0 ( 0 )
 نشر من قبل Gabriela Aurelio
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of the Cu-Sn-In ternary system has become of great importance in recent years, due to new environmental regulations forcing to eliminate the use of Pb in bonding technologies for electronic devices. A key relevant issue concerns the intermetallic phases which grow in the bonding zone and are determining in their quality and performance. In this work, we focus in the {eta}-phase (Cu2In or Cu6Sn5) that exists in both end binaries and as a ternary phase. We present a neutron diffraction study of the constitution and crystallography of a series of alloys around the 60 at.% Cu composition, and with In contents ranging from 0 to 25 at.%, quenched from 300degreeC. The alloys were characterized by scanning electron microscopy, probe microanalysis and high-resolution neutron diffraction. The Rietveld refinement of neutron diffraction data allowed to improve the currently available model for site occupancies in the hexagonal {eta}-phase in the binary Cu-Sn as well as in ternary alloys. For the first time, structural data is reported in the ternary Cu-Sn-In {eta}-phase as a function of composition, information that is of fundamental technological importance as well as valuable input data for ongoing modelisations of the ternary phase diagram.

قيم البحث

اقرأ أيضاً

241 - O. Zaharko , H. Ronnow , J. Mesot 2005
Polarized and unpolarized neutron diffraction studies have been carried out on single crystals of the coupled spin tetrahedra systems Cu2Te2O5X2 (X=Cl, Br). A model of the magnetic structure associated with the propagation vectors kCl ~ -0.150,0.422, 1/2 and kBr ~ -0.172,0.356,1/2 and stable below TN=18 K for X=Cl and TN=11 K for X=Br is proposed. A feature of the model, common to both the bromide and chloride, is a canted coplanar motif for the 4 Cu2+ spins on each tetrahedron which rotates on a helix from cell to cell following the propagation vector. The Cu2+magnetic moment determined for X=Br, 0.395(5)muB, is significantly less than for X=Cl, 0.88(1)muB at 2K. The magnetic structure of the chloride associated with the wave-vector k differs from that determined previously for the wave vector k~0.150,0.422,1/2 [O. Zaharko et.al. Phys. Rev. Lett. 93, 217206 (2004)].
A coherent x-ray diffraction experiment was performed on an isolated colloidal crystal grain at the coherence beamline P10 at PETRA III. Using azimuthal rotation scans the three-dimensional (3D) scattered intensity in reciprocal space from the sample was measured. It includes several Bragg peaks as well as the coherent interference around these peaks. The analysis of the scattered intensity reveals the presence of a plane defect in a single grain of the colloidal sample. We confirm these findings by model simulations. In these simulations we also analyze the experimental conditions to phase 3D diffraction pattern from a single colloidal grain. This approach has the potential to produce a high resolution image of the sample revealing its inner structure, with possible structural defects.
138 - T. Chatterji , M. Meven , 2016
We have investigated the temperature evolution of the magnetic structures of HoFeO$_3$ by single crystal neutron diffraction. The three different magnetic structures found as a function of temperature for hfo are described by the magnetic groups Pb$$ n$2_1$, Pbn$2_1$ and Pbn$2_1$ and are stable in the temperature ranges $approx$ 600-55~K, 55-37~K and 35$>T>2$~K respectively. In all three the fundamental coupling between the Fe sub-lattices remains the same and only their orientation and the degree of canting away from the ideal axial direction varies. The magnetic polarisation of the Ho sub-lattices in these two higher temperature regions, in which the major components of the Fe moment lie along $x$ and $y$, is very small. The canting of the moments from the axial directions is attributed to the antisymmetric interactions allowed by the crystal symmetry. They include contributions from single ion anisotropy as well as the Dzyaloshinski antisymmetric exchange. In the low temperature phase two further structural transitions are apparent in which the spontaneous magnetisation changes sign with respect to the underlying antiferromagnetic configuration. In this temperature range the antisymmetric exchange energy varies rapidly as the the Ho sub-lattices begin to order. So long as the ordered Ho moments are small the antisymmetric exchange is due only to Fe-Fe interactions, but as the degree of Ho order increases the Fe-Ho interactions take over whilst at the lowest temperatures, when the Ho moments approach saturation the Ho-Ho interactions dominate. The reversals of the spontaneous magnetisation found in this study suggest that in hfo the sums of the Fe-Fe and Ho-Ho antisymmetric interactions have the same sign as one another, but that of the Ho-Fe terms is opposite.
The transformation between the metallic ($beta$) and semi-conducting ($alpha$) allotropes of tin is still not well understood. The phase transition temperature stated in the literature, 286.2 K, seems to be inconsistent with recent calorimetric measu rements. In this paper, this intriguing aspect has been explored in Sn and Sn-Cu (alloyed 0.5% Cu by weight) using temperature resolved synchrotron x-ray diffraction measurements performed at the Indus-2 facility. Additionally, the $alpha rightleftharpoons beta$ Sn transition has been recorded using in-situ heating/cooling experiments in a scanning electron microscope. Based on these measurements, a protocol has been suggested to reduce the formation of $alpha$-Sn in potentially susceptible systems. This will be useful in experiments like TIN.TIN (The INdia-based TIN detector), which proposes to employ ~100 - 1000 kg of superconducting tin-based detectors to search for neutrinoless double beta decay in the isotope $^{124}$Sn.
Neutron and x-ray diffraction measurements are presented for powders and single crystals of CaCo{1.86}As2. The crystal structure is a collapsed-tetragonal ThCr2Si2-type structure as previously reported, but with 7(1)% vacancies on the Co sites corres ponding to the composition CaCo{1.86(2)}As2. The thermal expansion coefficients for both the a- and c-axes are positive from 10 to 300 K. Neutron diffraction measurements on single crystals demonstrate the onset of A-type collinear antiferromagnetic order below the Neel temperature TN = 52(1) K with the ordered moments directed along the tetragonal c-axis, aligned ferromagnetically in the ab-plane and antiferromagnetically stacked along the c-axis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا