ﻻ يوجد ملخص باللغة العربية
We present an investigation of the near-surface tetragonal phase transition in SrTiO3, using the complementary techniques of beta-detected nuclear magnetic resonance and grazing-incidence X-ray diffraction. The results show a clear depth dependence of the phase transition on scales of a few microns. The measurements support a model in which there are tetragonal domains forming in the sample at temperatures much higher than the bulk phase transition temperature. Moreover, we find that these domains tend to form at higher temperatures preferentially near the free surface of the crystal. The details of the tetragonal domain formation and their depth/lateral dependencies are discussed.
The transformation between the metallic ($beta$) and semi-conducting ($alpha$) allotropes of tin is still not well understood. The phase transition temperature stated in the literature, 286.2 K, seems to be inconsistent with recent calorimetric measu
We report a detailed investigation of the first stages of the growth of self-organized Fe clusters on the reconstructed Au(111) surface by grazing incidence X-ray diffraction. Below one monolayer coverage, the Fe clusters are in local epitaxy whereas
We present depth-resolved experimental results on the atomic and electronic structures of the Co-Cr interface on four IrMn/Cr/Co thin films with variable thickness of the Cr layer. Grazing incidence X-ray absorption near edge structure near the Cr K-
The incorporation of noble metal nanoparticles, displaying localized surface plasmon resonance, in the active area of donor-acceptor bulk-heterojunction organic photovoltaic devices is an industrially compatible light trapping strategy, able to guara
Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we r