ترغب بنشر مسار تعليمي؟ اضغط هنا

ARPES and transport studies of the elemental topological insulator $alpha$-Sn

108   0   0.0 ( 0 )
 نشر من قبل Quentin Barbedienne
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gray tin, also known as $alpha$-Sn, can be turned into a three-dimensional topological insulator (3D-TI) by strain and finite size effects. Such room temperature 3D-TI is peculiarly interesting for spintronics due to the spin-momentum locking along the Dirac cone (linear dispersion) of the surface states. Angle resolved photoemission spectroscopy (ARPES) has been used to investigate the dispersion close to the Fermi level in thin (0,0,1)-oriented epitaxially strained films of $alpha$-Sn, for different film thicknesses as well as for different capping layers (Al, AlO$_x$ and MgO). Indeed a proper capping layer is necessary to be able to use $alpha$-Sn surface states for spintronics applications. In contrast with free surfaces or surfaces coated with Ag, coating the $alpha$-Sn surface with Al or AlO$_x$ leads to a drop of the Fermi level below the Dirac point, an important consequence for transport is the presence of bulk states at the Fermi level. $alpha$-Sn films coated by AlO$_x$ are studied by electrical magnetotransport: despite clear evidence of surface states revealed by Shubnikov-de Haas oscillations, an important part of the magneto-transport properties is governed by bulk electronic states attributed to the $Gamma 8$ band, as suggested by {it ab-initio} calculations.



قيم البحث

اقرأ أيضاً

Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated w ith bulk electronic states near the Fermi level. Using angle-resolved photoemission spectroscopy (ARPES), we have observed such bulk Dirac cones in epitaxially-grown {alpha}-Sn films on InSb(111), the first such TDS system realized in an elemental form. First-principles calculations confirm that epitaxial strain is key to the formation of the TDS phase. A phase diagram is established that connects the 3D TDS phase through a singular point of a zero-gap semimetal phase to a topological insulator (TI) phase. The nature of the Dirac cone crosses over from 3D to 2D as the film thickness is reduced.
The transformation between the metallic ($beta$) and semi-conducting ($alpha$) allotropes of tin is still not well understood. The phase transition temperature stated in the literature, 286.2 K, seems to be inconsistent with recent calorimetric measu rements. In this paper, this intriguing aspect has been explored in Sn and Sn-Cu (alloyed 0.5% Cu by weight) using temperature resolved synchrotron x-ray diffraction measurements performed at the Indus-2 facility. Additionally, the $alpha rightleftharpoons beta$ Sn transition has been recorded using in-situ heating/cooling experiments in a scanning electron microscope. Based on these measurements, a protocol has been suggested to reduce the formation of $alpha$-Sn in potentially susceptible systems. This will be useful in experiments like TIN.TIN (The INdia-based TIN detector), which proposes to employ ~100 - 1000 kg of superconducting tin-based detectors to search for neutrinoless double beta decay in the isotope $^{124}$Sn.
A comparative study of the properties of topological insulator Bi2Te2Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compare d: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 x 1014 cm-3. Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (EF) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, that the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near EF. Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed.
Recent theoretical advances have proposed a new class of topological crystalline insulator (TCI) phases protected by rotational symmetries. Distinct from topological insulators (TIs), rotational symmetry-protected TCIs are expected to show unique top ologically protected boundary modes: First, the surface normal to the rotational axis features unpinned Dirac surface states whose Dirac points are located at generic k points. Second, due to the higher-order bulk boundary correspondence, a 3D TCI also supports 1D helical edge states. Despite the unique topological electronic properties, to date, purely rotational symmetry-protected TCIs remain elusive in real materials. Using first-principles band calculations and theoretical modeling, we identify the van der Waals material $alpha$-Bi4Br4 as a TCI purely protected by rotation symmetry. We show that the Bi4Br4s (010) surface exhibits a pair of unpinned topological Dirac fermions protected by the two-fold rotational axis. These unpinned Dirac fermions show an exotic spin texture highly favorable for spin transport and a band structure consisting of van Hove singularities due to Lifshitz transition. We also identify 1D topological hinge states along the edges of an $alpha$-Bi4Br4 rod. We further discuss how the proposed topological electronic properties in $alpha$-Bi4Br4 can be observed by various experimental techniques.
Co40Fe40B20 layers were grown on the Pb0.71Sn0.29Te topological insulator substrates by laser molecular beam epitaxy (LMBE) method, and the growth conditions were studied. The possibility of growing epitaxial layers of a ferromagnet on the surface of a topological insulator was demonstrated for the first time. The Co40Fe40B20 layers obtained have a bcc crystal structure with a crystalline (111) plane parallel to the (111) PbSnTe plane. The use of three-dimensional mapping in the reciprocal space of reflection high electron diffraction (RHEED) patterns made it possible to determine the epitaxial relationship of main crystallographic axes between the film and the substrate of topological insulator. Quenching of some reflections in diffraction pattern allows confirmation of the substrate stoichiometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا