ﻻ يوجد ملخص باللغة العربية
We use hypersurface support to classify thick (two-sided) ideals in the stable categories of representations for several families of finite-dimensional integrable Hopf algebras: bosonized quantum complete intersections, quantum Borels in type $A$, Drinfeld doubles of height 1 Borels in finite characteristic, and rings of functions on finite group schemes over a perfect field. We then identify the prime ideal (Balmer) spectra for these stable categories. In the curious case of functions on a finite group scheme $G$, the spectrum of the category is identified not with the spectrum of cohomology, but with the quotient of the spectrum of cohomology by the adjoint action of the subgroup of connected components $pi_0(G)$ in $G$.
Consider a Frobenius kernel G in a split semisimple algebraic group, in very good characteristic. We provide an analysis of support for the Drinfeld center Z(rep(G)) of the representation category for G, or equivalently for the representation categor
We apply the Auslander-Buchweitz approximation theory to show that the Iyama and Yoshinos subfactor triangulated category can be realized as a triangulated quotient. Applications of this realization go in three directions. Firstly, we recover both a
We introduce an infinite variant of hypersurface support for finite-dimensional, noncommutative complete intersections. By a noncommutative complete intersection we mean an algebra R which admits a smooth deformation $Qto R$ by a Noetherian algebra $
We describe graded commutative Gorenstein algebras ${mathcal E}_n(p)$ over a field of characteristic $p$, and we conjecture that $mathrm{Ext}^bullet_{mathsf{Ver}_{p^{n+1}}}(1,1)cong{mathcal E}_{n}(p)$, where $mathsf{Ver}_{p^{n+1}}$ are the new symmet
In this article we study Cohen-Macaulay modules over one-dimensional hypersurface singularities and the relationship with the representation theory of associative algebras using methods of cluster tilting theory. We give a criterion for existence of