ﻻ يوجد ملخص باللغة العربية
We apply the Auslander-Buchweitz approximation theory to show that the Iyama and Yoshinos subfactor triangulated category can be realized as a triangulated quotient. Applications of this realization go in three directions. Firstly, we recover both a result of Iyama and Yang and a result of the third author. Secondly, we extend the classical Buchweitzs triangle equivalence from Iwanaga-Gorenstein rings to Noetherian rings. Finally, we obtain the converse of Buchweitzs triangle equivalence and a result of Beligiannis, and give characterizations for Iwanaga-Gorenstein rings and Gorenstein algebras
It is well-known that derived equivalences preserve tensor products and trivial extensions. We disprove both constructions for stable equivalences of Morita type.
In this paper, we will consider derived equivalences for differential graded endomorphism algebras by Kellers approaches. First we construct derived equivalences of differential graded algebras which are endomorphism algebras of the objects from a tr
We introduce special classes of non-commutative crepant resolutions (= NCCR) which we call steady and splitting. We show that a singularity has a steady splitting NCCR if and only if it is a quotient singularity by a finite abelian group. We apply our results to toric singularities and dimer models.
The Jacobian algebra arising from a consistent dimer model is a bimodule $3$-Calabi-Yau algebra, and its center is a $3$-dimensional Gorenstein toric singularity. A perfect matching of a dimer model gives the degree making the Jacobian algebra $mathb
We show that the $p$-power maps in the first Hochschild cohomology space of finite-dimensional selfinjective algebras over a field of prime characteristic $p$ commute with stable equivalences of Morita type on the subgroup of classes represented by i