ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster tilting for one-dimensional hypersurface singularities

169   0   0.0 ( 0 )
 نشر من قبل Osamu Iyama
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we study Cohen-Macaulay modules over one-dimensional hypersurface singularities and the relationship with the representation theory of associative algebras using methods of cluster tilting theory. We give a criterion for existence of cluster tilting objects and their complete description by homological methods, using higher almost split sequences and results from birational geometry. We obtain a large class of 2-CY tilted algebras which are finite dimensional symmetric and satisfy $tau^2=id$. In particular, we compute 2-CY tilted algebras for simple and minimally elliptic curve singularities.



قيم البحث

اقرأ أيضاً

Let $Lambda$ be an artin algebra and $mathcal{M}$ be an n-cluster tilting subcategory of mod$Lambda$. We show that $mathcal{M}$ has an additive generator if and only if the n-almost split sequences form a basis for the relations for the Grothendieck group of $mathcal{M}$ if and only if every effaceable functor $mathcal{M}rightarrow Ab$ has finite length. As a consequence we show that if mod$Lambda$ has n-cluster tilting subcategory of finite type then the n-almost split sequences form a basis for the relations for the Grothendieck group of $Lambda$.
209 - Pin Liu 2008
In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.
According to a well-known theorem of Brieskorn and Slodowy, the intersection of the nilpotent cone of a simple Lie algebra with a transverse slice to the subregular nilpotent orbit is a simple surface singularity. At the opposite extremity of the nil potent cone, the closure of the minimal nilpotent orbit is also an isolated symplectic singularity, called a minimal singularity. For classical Lie algebras, Kraft and Procesi showed that these two types of singularities suffice to describe all generic singularities of nilpotent orbit closures: specifically, any such singularity is either a simple surface singularity, a minimal singularity, or a union of two simple surface singularities of type $A_{2k-1}$. In the present paper, we complete the picture by determining the generic singularities of all nilpotent orbit closures in exceptional Lie algebras (up to normalization in a few cases). We summarize the results in some graphs at the end of the paper. In most cases, we also obtain simple surface singularities or minimal singularities, though often with more complicated branching than occurs in the classical types. There are, however, six singularities which do not occur in the classical types. Three of these are unibranch non-normal singularities: an $SL_2(mathbb C)$-variety whose normalization is ${mathbb A}^2$, an $Sp_4(mathbb C)$-variety whose normalization is ${mathbb A}^4$, and a two-dimensional variety whose normalization is the simple surface singularity $A_3$. In addition, there are three 4-dimensional isolated singularities each appearing once. We also study an intrinsic symmetry action on the singularities, in analogy with Slodowys work for the regular nilpotent orbit.
We study the hyperplane arrangements associated, via the minimal model programme, to symplectic quotient singularities. We show that this hyperplane arrangement equals the arrangement of CM-hyperplanes coming from the representation theory of restric ted rational Cherednik algebras. We explain some of the interesting consequences of this identification for the representation theory of restricted rational Cherednik algebras. We also show that the Calogero-Moser space is smooth if and only if the Calogero-Moser families are trivial. We describe the arrangements of CM-hyperplanes associated to several exceptional complex reflection groups, some of which are free.
As a generalization of acyclic 2-Calabi-Yau categories, we consider 2-Calabi-Yau categories with a directed cluster-tilting subcategory; we study their cluster-tilting subcategories and the cluster combinatorics that they encode. We show that such ca tegories have a cluster structure. Triangulated 2-Calabi-Yau categories with a directed cluster-tilting subcategory are closely related to representations of certain semi-hereditary categories, more specifically to representations of thread quivers. Thread quivers are a tool to classify and study certain semi-hereditary categories using both quivers and linearly ordered sets (threads). We study the case where the thread quiver consists of a single thread (so that representations of this thread quiver correspond to representations of some linearly ordered set), and show that, similar to the case of a Dynkin quiver of type $A$, the cluster-tilting subcategories can be understood via triangulations of an associated cyclically ordered set. In this way, we gain insight into the structure of the cluster-tilting subcategories of 2-Calabi-Yau categories with a directed cluster-tilting subcategory. As an application, we show that every 2-Calabi-Yau category which admits a directed cluster-tilting subcategory with countably many isomorphism classes of indecomposable objects has a cluster-tilting subcategory $mathcal{V}$ with the following property: any rigid object in the cluster category can be reached from $mathcal{V}$ by finitely many mutations. This implies that there is a cluster map which is defined on all rigid objects, and thus that there is a cluster algebra whose cluster variables are exactly given by the rigid indecomposable objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا