ﻻ يوجد ملخص باللغة العربية
We introduce an infinite variant of hypersurface support for finite-dimensional, noncommutative complete intersections. By a noncommutative complete intersection we mean an algebra R which admits a smooth deformation $Qto R$ by a Noetherian algebra $Q$ which is of finite global dimension. We show that hypersurface support defines a support theory for the big singularity category $Sing(R)$, and that the support of an object in $Sing(R)$ vanishes if and only if the object itself vanishes. Our work is inspired by Avramov and Buchweitz support theory for (commutative) local complete intersections. In a companion piece, we employ hypersurface support, and the results of the present paper, to classify thick ideals in stable categories for a number of families of finite-dimensional Hopf algebras.
We equate various Euler classes of algebraic vector bundles, including those of [BM, KW, DJK], and one suggested by M.J. Hopkins, A. Raksit, and J.-P. Serre. We establish integrality results for this Euler class, and give formulas for local indices a
Support varieties for any finite dimensional algebra over a field were introduced by Snashall-Solberg using graded subalgebras of the Hochschild cohomology. We mainly study these varieties for selfinjective algebras under appropriate finite generatio
We use hypersurface support to classify thick (two-sided) ideals in the stable categories of representations for several families of finite-dimensional integrable Hopf algebras: bosonized quantum complete intersections, quantum Borels in type $A$, Dr
Using combinatorics of chains going back to works of Anick, Green, Happel and Zacharia, we give, for any monomial algebra $A$, an explicit description of its minimal model. This also provides us with formulas for a canonical $A_infty$-structure on th
Let $(A,mathfrak{m})$ be an abstract complete intersection and let $P$ be a prime ideal of $A$. In [1] Avramov proved that $A_P$ is an abstract complete intersection. In this paper we give an elementary proof of this result.