ﻻ يوجد ملخص باللغة العربية
As the number of qubits in nascent quantum processing units increases, the connectorized RF (radio frequency) analog circuits used in first generation experiments become exceedingly complex. The physical size, cost and electrical failure rate all become limiting factors in the extensibility of control systems. We have developed a series of compact RF mixing boards to address this challenge by integrating I/Q quadrature mixing, IF(intermediate frequency)/LO(local oscillator)/RF power level adjustments, and DC (direct current) bias fine tuning on a 40 mm $times $ 80 mm 4-layer PCB (printed circuit board) board with EMI (electromagnetic interference) shielding. The RF mixing module is designed to work with RF and LO frequencies between 2.5 and 8.5 GHz. The typical image rejection and adjacent channel isolation are measured to be $sim$27 dBc and $sim$50 dB. By scanning the drive phase in a loopback test, the module short-term amplitude and phase linearity are typically measured to be 5$times$10$^{-4}$ (V$_{mathrm{pp}}$/V$_{mathrm{mean}}$) and 1$times$10$^{-3}$ radian (pk-pk). The operation of RF mixing board was validated by integrating it into the room temperature control system of a superconducting quantum processor and executing randomized benchmarking characterization of single and two qubit gates. We measured a single-qubit process infidelity of $9.3(3) times 10^{-4}$ and a two-qubit process infidelity of $2.7(1) times 10^{-2}$.
We demonstrate coherent storage and retrieval of pulsed light using the atomic frequency comb quantum memory protocol in a room temperature alkali vapour. We utilise velocity-selective optical pumping to prepare multiple velocity classes in the $F=4$
Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahe
Superfluid heliums low-loss dielectric properties, excellent thermal conductivity, and unique collective excitations make it an attractive candidate to incorporate into superconducting qubit systems. We controllably immerse a three-dimensional superc
We introduce and experimentally characterize a superconducting single-sideband modulator compatible with cryogenic microwave circuits, and propose its use for frequency domain multiplexing of superconducting qubit readout. The monolithic single-quadr
Quantum feedback is a technique for measuring a qubit and applying appropriate feedback depending on the measurement results. Here, we propose a new on-chip quantum feedback method where the measurement-result information is not taken from the chip t