ﻻ يوجد ملخص باللغة العربية
Superfluid heliums low-loss dielectric properties, excellent thermal conductivity, and unique collective excitations make it an attractive candidate to incorporate into superconducting qubit systems. We controllably immerse a three-dimensional superconducting transmon qubit in superfluid helium-4 and measure the spectroscopic and coherence properties of the system. We find that the cavity, the qubit, and their coupling are all modified by the superfluid, which we analyze within the framework of circuit quantum electrodynamics (cQED). At at temperatures relevant to quantum computing experiments, the energy relaxation time of the qubit is not significantly changed by the presence of the superfluid, while the pure dephasing time modestly increases, which we attribute to improved thermalization of the microwave environment via the superfluid.
Nonreciprocal microwave devices play several critical roles in high-fidelity, quantum-nondemolition (QND) measurement schemes. They separate input from output, impose unidirectional routing of readout signals, and protect the quantum systems from unw
Rigidity of an ordered phase in condensed matter results in collective excitation modes spatially extending in macroscopic dimensions. Magnon is a quantum of an elementary excitation in the ordered spin system, such as ferromagnet. Being low dissipat
Quantum feedback is a technique for measuring a qubit and applying appropriate feedback depending on the measurement results. Here, we propose a new on-chip quantum feedback method where the measurement-result information is not taken from the chip t
The interaction between an atom and the electromagnetic field inside a cavity has played a crucial role in the historical development of our understanding of light-matter interaction and is a central part of various quantum technologies, such as lase
We operate a superconducting quantum processor consisting of two tunable transmon qubits coupled by a swapping interaction, and equipped with non destructive single-shot readout of the two qubits. With this processor, we run the Grover search algorit