ترغب بنشر مسار تعليمي؟ اضغط هنا

On-chip quantum feedback control of a superconducting qubit

109   0   0.0 ( 0 )
 نشر من قبل Yuichiro Matsuzaki
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum feedback is a technique for measuring a qubit and applying appropriate feedback depending on the measurement results. Here, we propose a new on-chip quantum feedback method where the measurement-result information is not taken from the chip to the outside of a dilution refrigerator. This can be done by using a selective qubit-energy shift induced by measurement apparatus. We demonstrate on-chip quantum feedback and succeed in the rapid initialization of a qubit by flipping the qubit state only when we detect the ground state of the qubit. The feedback loop of our quantum feedback method closed on a chip, and so the operating time needed to control a qubit is of the order of 10 ns. This operating time is shorter than with the convectional off-chip feedback method. Our on-chip quantum feedback technique opens many possibilities such as an application to quantum information processing and providing an understanding of the foundation of thermodynamics for quantum systems.

قيم البحث

اقرأ أيضاً

The act of measurement bridges the quantum and classical worlds by projecting a superposition of possible states into a single, albeit probabilistic, outcome. The time-scale of this instantaneous process can be stretched using weak measurements so th at it takes the form of a gradual random walk towards a final state. Remarkably, the interim measurement record is sufficient to continuously track and steer the quantum state using feedback. We monitor the dynamics of a resonantly driven quantum two-level system -- a superconducting quantum bit --using a near-noiseless parametric amplifier. The high-fidelity measurement output is used to actively stabilize the phase of Rabi oscillations, enabling them to persist indefinitely. This new functionality shows promise for fighting decoherence and defines a path for continuous quantum error correction.
Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum t echnology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.
We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Non-reciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor mi crowave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW ($approx 10^3$ circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.
Measurement-based feedback control is central in quantum computing and precise quantum control. Here we realize a fast and flexible field-programmable-gate-array-based feedback control in a superconducting Xmon qubit system. The latency of room-tempe rature electronics is custom optimized to be as short as 140 ns. Projective measurement of a signal qubit produces a feedback tag to actuate a conditional pulse gate to the qubit. In a feed-forward process, the measurement-based feedback tag is brought to a different target qubit for a conditional control. In a two-qubit experiment, the feedback and feed-forward controls are simultaneously actuated in consecutive steps. A quantum number is then generated by the signal qubit, and a random walk of the target qubit is correspondingly triggered and realized on the Bloch sphere. Our experiment provides a conceptually simple and intuitive benchmark for the feedback control in a multi-qubit system. The feedback system can be further scaled up for more complex feedback control experiments.
92 - A. Dewes , R. Lauro , F.R. Ong 2011
We operate a superconducting quantum processor consisting of two tunable transmon qubits coupled by a swapping interaction, and equipped with non destructive single-shot readout of the two qubits. With this processor, we run the Grover search algorit hm among four objects and find that the correct answer is retrieved after a single run with a success probability between 0.52 and 0.67, significantly larger than the 0.25 achieved with a classical algorithm. This constitutes a proof-of-concept for the quantum speed-up of electrical quantum processors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا