ﻻ يوجد ملخص باللغة العربية
Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, $sim 3 mu V cm^{-1}Hz^{-1/2}$ sensitivity is achieved and is found to be photon shot noise limited.
We utilize a homodyne detection technique to achieve a new sensitivity limit for atom-based, absolute radio-frequency electric field sensing of $mathrm{5 mu V cm^{-1} Hz^{-1/2} }$. A Mach-Zehnder interferometer is used for the homodyne detection. Wit
We demonstrate coherent storage and retrieval of pulsed light using the atomic frequency comb quantum memory protocol in a room temperature alkali vapour. We utilise velocity-selective optical pumping to prepare multiple velocity classes in the $F=4$
We develop and study quantum and semi-classical models of Rydberg-atom spectroscopy in amplitude-modulated optical lattices. Both initial- and target-state Rydberg atoms are trapped in the lattice. Unlike in any other spectroscopic scheme, the modula
As the number of qubits in nascent quantum processing units increases, the connectorized RF (radio frequency) analog circuits used in first generation experiments become exceedingly complex. The physical size, cost and electrical failure rate all bec
A three-step laser excitation scheme is used to make absolute frequency measurements of highly excited nF7/2 Rydberg states in 85Rb for principal quantum numbers n=33-100. This work demonstrates the first absolute frequency measurements of rubidium R