ترغب بنشر مسار تعليمي؟ اضغط هنا

Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells

113   0   0.0 ( 0 )
 نشر من قبل Santosh Kumar
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, $sim 3 mu V cm^{-1}Hz^{-1/2}$ sensitivity is achieved and is found to be photon shot noise limited.



قيم البحث

اقرأ أيضاً

We utilize a homodyne detection technique to achieve a new sensitivity limit for atom-based, absolute radio-frequency electric field sensing of $mathrm{5 mu V cm^{-1} Hz^{-1/2} }$. A Mach-Zehnder interferometer is used for the homodyne detection. Wit h the increased sensitivity, we investigate the dominant dephasing mechanisms that affect the performance of the sensor. In particular, we present data on power broadening, collisional broadening and transit time broadening. Our results are compared to density matrix calculations. We show that photon shot noise in the signal readout is currently a limiting factor. We suggest that new approaches with superior readout with respect to photon shot noise are needed to increase the sensitivity further.
83 - D. Main , T. M. Hird , S. Gao 2020
We demonstrate coherent storage and retrieval of pulsed light using the atomic frequency comb quantum memory protocol in a room temperature alkali vapour. We utilise velocity-selective optical pumping to prepare multiple velocity classes in the $F=4$ hyperfine ground state of caesium. The frequency spacing of the classes is chosen to coincide with the $F=4 - F=5$ hyperfine splitting of the $6^2$P$_{3/2}$ excited state resulting in a broadband periodic absorbing structure consisting of two usually Doppler-broadened optical transitions. Weak coherent states of duration $2,mathrm{ns}$ are mapped into this atomic frequency comb with pre-programmed recall times of $8,mathrm{ns}$ and $12,mathrm{ns}$, with multi-temporal mode storage and recall demonstrated. Utilising two transitions in the comb leads to an additional interference effect upon rephasing that enhances the recall efficiency.
111 - V. S. Malinovsky , K. R. Moore , 2019
We develop and study quantum and semi-classical models of Rydberg-atom spectroscopy in amplitude-modulated optical lattices. Both initial- and target-state Rydberg atoms are trapped in the lattice. Unlike in any other spectroscopic scheme, the modula tion-induced ponderomotive coupling between the Rydberg states is spatially periodic and perfectly phase-locked to the lattice trapping potentials. This leads to a novel type of sub-Doppler mechanism, which we explain in detail. In our exact quantum model, we solve the time-dependent Schrodinger equation in the product space of center-of-mass (COM) momentum states and the internal-state space. We also develop a perturbative model based on the band structure in the lattice and Fermis golden rule, as well as a semi-classical trajectory model in which the COM is treated classically and the internal-state dynamics quantum-mechanically. In all models we obtain the spectrum of the target Rydberg-state population versus the lattice modulation frequency, averaged over the initial thermal COM momentum distribution of the atoms. We investigate the quantum-classical correspondence of the problem in several parameter regimes and exhibit spectral features that arise from vibrational COM coherences and rotary-echo effects. Applications in Rydberg-atom spectroscopy are discussed.
As the number of qubits in nascent quantum processing units increases, the connectorized RF (radio frequency) analog circuits used in first generation experiments become exceedingly complex. The physical size, cost and electrical failure rate all bec ome limiting factors in the extensibility of control systems. We have developed a series of compact RF mixing boards to address this challenge by integrating I/Q quadrature mixing, IF(intermediate frequency)/LO(local oscillator)/RF power level adjustments, and DC (direct current) bias fine tuning on a 40 mm $times $ 80 mm 4-layer PCB (printed circuit board) board with EMI (electromagnetic interference) shielding. The RF mixing module is designed to work with RF and LO frequencies between 2.5 and 8.5 GHz. The typical image rejection and adjacent channel isolation are measured to be $sim$27 dBc and $sim$50 dB. By scanning the drive phase in a loopback test, the module short-term amplitude and phase linearity are typically measured to be 5$times$10$^{-4}$ (V$_{mathrm{pp}}$/V$_{mathrm{mean}}$) and 1$times$10$^{-3}$ radian (pk-pk). The operation of RF mixing board was validated by integrating it into the room temperature control system of a superconducting quantum processor and executing randomized benchmarking characterization of single and two qubit gates. We measured a single-qubit process infidelity of $9.3(3) times 10^{-4}$ and a two-qubit process infidelity of $2.7(1) times 10^{-2}$.
A three-step laser excitation scheme is used to make absolute frequency measurements of highly excited nF7/2 Rydberg states in 85Rb for principal quantum numbers n=33-100. This work demonstrates the first absolute frequency measurements of rubidium R ydberg levels using a purely optical detection scheme. The Rydberg states are excited in a heated Rb vapour cell and Doppler free signals are detected via purely optical means. All of the frequency measurements are made using a wavemeter which is calibrated against a GPS disciplined self-referenced optical frequency comb. We find that the measured levels have a very high frequency stability, and are especially robust to electric fields. The apparatus has allowed measurements of the states to an accuracy of 8.0MHz. The new measurements are analysed by extracting the modified Rydberg-Ritz series parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا