ترغب بنشر مسار تعليمي؟ اضغط هنا

New constraints on the planetary system around the young active star AU Mic. Two transiting warm Neptunes near mean-motion resonance

101   0   0.0 ( 0 )
 نشر من قبل Eder Martioli
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

AU Mic is a young, active star whose transiting planet was recently detected. We report our analysis of its TESS data, where we modeled the BY Draconis type quasi-periodic rotational modulation by starspots simultaneously to the flaring activity and planetary transits. We measured a flare occurrence rate of 6.35 flares per day for flares with amplitudes in the range of $0.06% < f_{rm max} < 1.5%$ of the star flux. We employed a Bayesian MCMC analysis to model the five transits of AU Mic b, improving the constraints on the planetary parameters. The planet radius of $4.07pm0.17$~R$_{oplus}$ and a mean density of $1.4pm0.4$~g~cm$^{-3}$ confirms that it is a Neptune-size moderately inflated planet. While a single feature possibly due to a second planet was previously reported in the former TESS data, we report the detection of two additional transit-like events in the new TESS observations of July 2020. This represents substantial evidence for a second planet (AU Mic c) in the system. We analyzed its three transits and obtained an orbital period of $18.859019pm0.000016$~d and a planetary radius of $3.24pm0.16$~R$_{oplus}$, which defines it as a warm Neptune-size planet with an expected mass in the range of 2.2~M$_{oplus}$~$< M_{rm c} < $25.0~M$_{oplus}$. The two planets in the system are in near 9:4 mean-motion resonance. We show that this configuration is dynamically stable and should produce transit-timing variations (TTV). Our non-detection of significant TTV in AU Mic b suggests an upper limit for the mass of AU Mic c of $<7$~M$_{oplus}$, indicating that this planet is also likely to be inflated. As a young multi-planet system with at least two transiting planets, AU Mic becomes a key system for the study of atmospheres of infant planets and of planet-planet and planet-disk dynamics at the early stages of planetary evolution.

قيم البحث

اقرأ أيضاً

We present the confirmation of the eccentric warm giant planet TOI-201 b, first identified as a candidate in textit{TESS} photometry (Sectors 1-8, 10-13, and 27-28) and confirmed using ground-based photometry from NGTS and radial velocities from FERO S, HARPS, CORALIE, and textsc{Minerva}-Australis. TOI-201 b orbits a young ($mathrm{0.87^{+0.46}_{-0.49} , Gyr}$) and bright(V=9.07 mag) F-type star with a $mathrm{52.9781 , d}$ period. The planet has a mass of $mathrm{0.42^{+0.05}_{-0.03}, M_J}$, a radius of $mathrm{1.008^{+0.012}_{-0.015}, R_J}$, and an orbital eccentricity of $0.28^{+0.06}_{-0.09}$; it appears to still be undergoing fairly rapid cooling, as expected given the youth of the host star. The star also shows long-term variability in both the radial velocities and several activity indicators, which we attribute to stellar activity. The discovery and characterization of warm giant planets such as TOI-201 b is important for constraining formation and evolution theories for giant planets.
We report the discovery and characterization of two transiting planets around the bright M1 V star LP 961-53 (TOI-776, J = 8.5 mag, M = 0.54+-0.03 Msun) detected during Sector 10 observations of the Transiting Exoplanet Survey Satellite (TESS). Combi ning the TESS photometry with HARPS radial velocities, as well as ground-based follow-up transit observations from MEarth and LCOGT telescopes, we measured for the inner planet, TOI-776 b, a period of 8.25 d, a radius of 1.85+-0.13 Re, and a mass of 4.0+-0.9 Me; and for the outer planet, TOI-776 c, a period of 15.66 d, a radius of 2.02+-0.14 Re, and a mass of 5.3+-1.8 Me. The Doppler data shows one additional signal, with a period of 34 d, associated with the rotational period of the star. The analysis of fifteen years of ground-based photometric monitoring data and the inspection of different spectral line indicators confirm this assumption. The bulk densities of TOI-776 b and c allow for a wide range of possible interior and atmospheric compositions. However, both planets have retained a significant atmosphere, with slightly different envelope mass fractions. Thanks to their location near the radius gap for M dwarfs, we can start to explore the mechanism(s) responsible for the radius valley emergence around low-mass stars as compared to solar-like stars. While a larger sample of well-characterized planets in this parameter space is still needed to draw firm conclusions, we tentatively estimate that the stellar mass below which thermally-driven mass loss is no longer the main formation pathway for sculpting the radius valley is between 0.63 and 0.54 Msun. Due to the brightness of the star, the TOI-776 system is also an excellent target for the James Webb Space Telescope, providing a remarkable laboratory to break the degeneracy in planetary interior models and to test formation and evolution theories of small planets around low-mass stars.
TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P=11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light cu rves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hours. Radial velocity follow-up with FEROS, HARPS and PFS confirms the planetary nature of the transiting candidate (a$_{rm b}$ = 0.096 $pm$ 0.002 au, m$_{rm b}$ = 0.98 $pm$ 0.06 M$_{rm Jup}$), and dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a$_{rm c}$ = 0.155 $pm$ 0.003 au, m$_{rm c}$= $0.37 pm 0.10$ M$_{rm Jup}$) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M$_odot$, a radius of 0.79 R$_odot$, and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 MMR, which is a rare configuration, and their formation and dynamical evolution are still not well understood.
Gliese 876 harbors one of the most dynamically rich and well-studied exoplanetary systems. The nearby M4V dwarf hosts four known planets, the outer three of which are trapped in a Laplace mean-motion resonance. A thorough characterization of the comp lex resonant perturbations exhibited by the orbiting planets, and the chaotic dynamics therein, is key to a complete picture of the systems formation and evolutionary history. Here we present a reanalysis of the system using six years of new radial velocity (RV) data from four instruments. This new data augments and more than doubles the size of the decades-long collection of existing velocity measurements. We provide updated estimates of the system parameters by employing a computationally efficient Wisdom-Holman N-body symplectic integrator, coupled with a Gaussian Process (GP) regression model to account for correlated stellar noise. Experiments with synthetic RV data show that the dynamical characterization of the system can differ depending on whether a white noise or correlated noise model is adopted. Despite there being a region of stability for an additional planet in the resonant chain, we find no evidence for one. Our new parameter estimates place the system even deeper into resonance than previously thought and suggest that the system might be in a low energy, quasi-regular double apsidal corotation resonance. This result and others will be used in a subsequent study on the primordial migration processes responsible for the formation of the resonant chain.
We present high resolution near-infrared spectropolarimetric observations using the SPIRou instrument at CFHT during a transit of the recently detected young planet AU Mic b, with supporting spectroscopic data from iSHELL at IRTF. We detect Zeeman si gnatures in the Stokes V profiles, and measure a mean longitudinal magnetic field of $overline{B}_ell=46.3pm0.7$~G. Rotationally modulated magnetic spots likely cause long-term variations of the field with a slope of $d{B_ell}/dt=-108.7pm7.7$~G/d. We apply the cross-correlation technique to measure line profiles and obtain radial velocities through CCF template matching. We find an empirical linear relationship between radial velocity and $B_ell$, which allows us to estimate the radial velocity variations which stellar activity induces through rotational modulation of spots for the five hours of continuous monitoring of AU Mic with SPIRou. We model the corrected radial velocities for the classical Rossiter-McLaughlin effect, using MCMC to sample the posterior distribution of the model parameters. This analysis shows that the orbit of AU Mic b is prograde and aligned with the stellar rotation axis with a sky-projected spin-orbit obliquity of $lambda=0^{+18}_{-15}$ degrees. The aligned orbit of AU Mic b indicates that it formed in the protoplanetary disk that evolved to the current debris disk around AU Mic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا