ترغب بنشر مسار تعليمي؟ اضغط هنا

A transiting warm giant planet around the young active star TOI-201

217   0   0.0 ( 0 )
 نشر من قبل Melissa Hobson
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the confirmation of the eccentric warm giant planet TOI-201 b, first identified as a candidate in textit{TESS} photometry (Sectors 1-8, 10-13, and 27-28) and confirmed using ground-based photometry from NGTS and radial velocities from FEROS, HARPS, CORALIE, and textsc{Minerva}-Australis. TOI-201 b orbits a young ($mathrm{0.87^{+0.46}_{-0.49} , Gyr}$) and bright(V=9.07 mag) F-type star with a $mathrm{52.9781 , d}$ period. The planet has a mass of $mathrm{0.42^{+0.05}_{-0.03}, M_J}$, a radius of $mathrm{1.008^{+0.012}_{-0.015}, R_J}$, and an orbital eccentricity of $0.28^{+0.06}_{-0.09}$; it appears to still be undergoing fairly rapid cooling, as expected given the youth of the host star. The star also shows long-term variability in both the radial velocities and several activity indicators, which we attribute to stellar activity. The discovery and characterization of warm giant planets such as TOI-201 b is important for constraining formation and evolution theories for giant planets.



قيم البحث

اقرأ أيضاً

The SHINE program is a large high-contrast near-infrared survey of 600 young, nearby stars. It is aimed at searching for and characterizing new planetary systems using VLT/SPHEREs unprecedented high-contrast and high-angular resolution imaging capabi lities. It also intends at placing statistical constraints on the occurrence and orbital properties of the giant planet population at large orbits as a function of the stellar host mass and age to test planet formation theories. We use the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-constrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP65426. It is a member of the ~17 Myr old Lower Centaurus-Crux association. At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2um indicate a warm, dusty atmosphere characteristic of young low surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 MJup, Teff=1300-1600 K and R=1.5 RJup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g)=4.0-5.0 with smaller radii (1.0-1.3 RJup). Given its physical and spectral properties, HIP65426b occupies a rather unique placement in terms of age, mass and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.
AU Mic is a young, active star whose transiting planet was recently detected. We report our analysis of its TESS data, where we modeled the BY Draconis type quasi-periodic rotational modulation by starspots simultaneously to the flaring activity and planetary transits. We measured a flare occurrence rate of 6.35 flares per day for flares with amplitudes in the range of $0.06% < f_{rm max} < 1.5%$ of the star flux. We employed a Bayesian MCMC analysis to model the five transits of AU Mic b, improving the constraints on the planetary parameters. The planet radius of $4.07pm0.17$~R$_{oplus}$ and a mean density of $1.4pm0.4$~g~cm$^{-3}$ confirms that it is a Neptune-size moderately inflated planet. While a single feature possibly due to a second planet was previously reported in the former TESS data, we report the detection of two additional transit-like events in the new TESS observations of July 2020. This represents substantial evidence for a second planet (AU Mic c) in the system. We analyzed its three transits and obtained an orbital period of $18.859019pm0.000016$~d and a planetary radius of $3.24pm0.16$~R$_{oplus}$, which defines it as a warm Neptune-size planet with an expected mass in the range of 2.2~M$_{oplus}$~$< M_{rm c} < $25.0~M$_{oplus}$. The two planets in the system are in near 9:4 mean-motion resonance. We show that this configuration is dynamically stable and should produce transit-timing variations (TTV). Our non-detection of significant TTV in AU Mic b suggests an upper limit for the mass of AU Mic c of $<7$~M$_{oplus}$, indicating that this planet is also likely to be inflated. As a young multi-planet system with at least two transiting planets, AU Mic becomes a key system for the study of atmospheres of infant planets and of planet-planet and planet-disk dynamics at the early stages of planetary evolution.
We present the confirmation and characterisation of GJ 3473 b (G 50--16, TOI-488.01), a hot Earth-sized planet orbiting an M4 dwarf star, whose transiting signal ($P=1.1980035pm0.0000018mathrm{,d}$) was first detected by the Transiting Exoplanet Surv ey Satellite (TESS). Through a joint modelling of follow-up radial velocity observations with CARMENES, IRD, and HARPS together with extensive ground-based photometric follow-up observations with LCOGT, MuSCAT, and MuSCAT2, we determined a precise planetary mass, $M_b = 1.86pm0.30,mathrm{M_oplus},$ and radius, $R_b = {1.264pm0.050},mathrm{R_oplus}$. Additionally, we report the discovery of a second, temperate, non-transiting planet in the system, GJ 3473 c, which has a minimum mass, $M_c sin{i} = {7.41pm0.91},mathrm{M_oplus,}$ and orbital period, $P_c={15.509pm0.033},mathrm{d}$. The inner planet of the system, GJ 3473 b, is one of the hottest transiting Earth-sized planets known thus far, accompanied by a dynamical mass measurement, which makes it a particularly attractive target for thermal emission spectroscopy.
We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, $m_{rm Kp} = 11.6$, $T_{rm eff} = 5576$ K, $M_star = 0.98, M_odot$). The planet transits every 9.43 days, with apparent depth variatio ns and brightening anomalies caused by large starspots. The planets radius is $6.1 pm 0.2 R_{earth}$, based on the transit light curve and the estimated stellar parameters. The planets mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit we can place a rough upper bound of $120 M_{earth}$ (3$sigma$). The host star has a high obliquity ($psi$ = $104^{circ}$), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.
TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P=11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light cu rves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hours. Radial velocity follow-up with FEROS, HARPS and PFS confirms the planetary nature of the transiting candidate (a$_{rm b}$ = 0.096 $pm$ 0.002 au, m$_{rm b}$ = 0.98 $pm$ 0.06 M$_{rm Jup}$), and dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a$_{rm c}$ = 0.155 $pm$ 0.003 au, m$_{rm c}$= $0.37 pm 0.10$ M$_{rm Jup}$) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M$_odot$, a radius of 0.79 R$_odot$, and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 MMR, which is a rare configuration, and their formation and dynamical evolution are still not well understood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا