ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit alignment and magnetic activity in the young planetary system AU Mic

86   0   0.0 ( 0 )
 نشر من قبل Eder Martioli
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high resolution near-infrared spectropolarimetric observations using the SPIRou instrument at CFHT during a transit of the recently detected young planet AU Mic b, with supporting spectroscopic data from iSHELL at IRTF. We detect Zeeman signatures in the Stokes V profiles, and measure a mean longitudinal magnetic field of $overline{B}_ell=46.3pm0.7$~G. Rotationally modulated magnetic spots likely cause long-term variations of the field with a slope of $d{B_ell}/dt=-108.7pm7.7$~G/d. We apply the cross-correlation technique to measure line profiles and obtain radial velocities through CCF template matching. We find an empirical linear relationship between radial velocity and $B_ell$, which allows us to estimate the radial velocity variations which stellar activity induces through rotational modulation of spots for the five hours of continuous monitoring of AU Mic with SPIRou. We model the corrected radial velocities for the classical Rossiter-McLaughlin effect, using MCMC to sample the posterior distribution of the model parameters. This analysis shows that the orbit of AU Mic b is prograde and aligned with the stellar rotation axis with a sky-projected spin-orbit obliquity of $lambda=0^{+18}_{-15}$ degrees. The aligned orbit of AU Mic b indicates that it formed in the protoplanetary disk that evolved to the current debris disk around AU Mic.

قيم البحث

اقرأ أيضاً

We report measurements of the sky-projected spin-orbit angle for AU,Mic,b, a Neptune-size planet orbiting a very young ($sim20$,Myr) nearby pre-main sequence M dwarf star which also hosts a bright, edge-on, debris disk. The planet was recently discov ered from preliminary analysis of radial velocity observations and confirmed to be transiting its host star from photometric data from the NASAs textit{TESS} mission. We obtained radial velocity measurements of AU,Mic over the course of two partially observable transits and one full transit of planet b from high-resolution spectroscopic observations made with the {textsc{Minerva}}-Australis telescope array. Only a marginal detection of the Rossiter--McLaughlin effect signal was obtained from the radial velocities, in part due to AU Mic being an extremely active star and the lack of full transit coverage plus sufficient out-of-transit baseline. As such, a precise determination of the obliquity for AU,Mic,b is not possible in this study and we find a sky-projected spin-orbit angle of $lambda = 47{^{+26}_{-54}}^{circ}$. This result is consistent with both the planets orbit being aligned or highly misaligned with the spin-axis of its host star. Our measurement independently agrees with, but is far less precise than observations carried out on other instruments around the same time that measure a low obliquity orbit for the planet. AU,Mic is the youngest exoplanetary system for which the projected spin-orbit angle has been measured, making it a key data point in the study of the formation and migration of exoplanets -- particularly given that the system is also host to a bright debris disk.
AU Mic is a young, very active M dwarf star with a debris disk and at least one transiting Neptune-size planet. Here we present detailed analysis of the magnetic field of AU Mic based on previously unpublished high-resolution optical and near-infrare d spectropolarimetric observations. We report a systematic detection of circular and linear polarization signatures in the stellar photospheric lines. Tentative Zeeman Doppler imaging modeling of the former data suggests a non-axisymmetric global field with a surface-averaged strength of about 90 G. At the same time, linear polarization observations indicate the presence of a much stronger $approx$2 kG axisymmetric dipolar field, which contributes no circular polarization signal due to the equator-on orientation of AU Mic. A separate Zeeman broadening and intensification analysis allowed us to determine a mean field modulus of 2.3 and 2.1 kG from the Y- and K-band atomic lines respectively. These magnetic field measurements are essential for understanding environmental conditions within the AU Mic planetary system.
The angle between the stellar spin-axis and the orbital plane of a stellar or planetary companion has important implications for the formation and evolution of such systems. A study by Hale (1994) found that binaries with separations $a < 30$ au are preferentially aligned while binaries on wider orbits are frequently misaligned. We aim to test the robustness of the Hale (1994) results by reanalysing the sample of visual binaries with measured rotation periods using independently derived stellar parameters and a Bayesian formalism. Our analysis is based on a combination of data from Hale (1994) and newly obtained spectroscopic data from the Hertzsprung SONG telescope, combined with astrometric data from Gaia DR2 and the Washington Double Star Catalog. We combine measurements of stellar radii and rotation periods to obtain stellar rotational velocities $v$. Rotational velocities $v$ are combined with measurements of projected rotational velocities $vsin i$ to derive posterior probability distributions of stellar inclination angles $i$. We determine line-of-sight projected spin-orbit angles by comparing stellar inclination angles with astrometric orbital inclination angles. We find that the precision of the available data is insufficient to make inferences about the spin-orbit alignment of visual binaries. The data are equally compatible with alignment and misalignment at all orbital separations. We conclude that the previously reported trend that binaries with separations $a < 30$ au are preferentially aligned is spurious. The spin-orbit alignment distribution of visual binaries is unconstrained. Based on simulated observations, we predict that it will be difficult to reach the sufficient precision in $vsin i$, rotation periods, and orbital inclination required to make robust statistical inferences about the spin-orbit alignment of visual binaries.
Equal-mass stars in young open clusters and loose associations exhibit a wide spread of rotation periods, which likely originates from differences in the initial rotation periods and in the primordial disc lifetimes. We want to explore if the gravita tional effects by nearby companions may play an additional role in producing the observed rotation period spread. We measure the photometric rotation periods of components of multiple stellar systems and look for correlations of the period differences among the components to their reciprocal distances. In this paper, we analysed the triple system AU Mic + AT Mic A&B in the 25-Myr beta Pictoris Association. We have retrieved from the literature the rotation period of AU Mic (P = 4.85d) and measured from photometric archival data the rotation periods of both components of AT Mic (P = 1.19d and P = 0.78d) for the first time. Moreover, we detected a high rate of flare events from AT Mic. Whereas the distant component AU Mic has evolved rotationally as a single star, the A and B components of AT Mic, separated by about 27 AU, exhibit a rotation rate a factor 5 larger than AU Mic. Moreover, the A and B components, despite have about equal mass, show a significant difference (about 40%) between their rotation periods. A possible explanation is that the gravitational forces between the A and B components of AT Mic (that are a factor about 7.3 x 10^6 more intense than those between AU Mic and AT Mic) have enhanced the dispersal of the AT Mic primordial disc, shortening its lifetime and the disc-locking phase duration, making the component A and B of AT Mic to rotate faster than the more distant AU Mic. We suspect that a different level of magnetic activity between the A and B components of AT Mic may be the additional parameter responsible for the difference between their rotation periods.
We present a velocimetric and spectropolarimetric analysis of 27 observations of the 22-Myr M1 star AU Microscopii (Au Mic) collected with the high-resolution $YJHK$ (0.98-2.35 $mu$m) spectropolarimeter SPIRou from 2019 September 18 to November 14. O ur radial velocity (RV) time-series exhibits activity-induced fluctuations of 45 m/s RMS, about three times smaller than those measured in the optical domain, that we filter using Gaussian Process Regression. We report a 3.9$sigma$-detection of the recently-discovered 8.46-d transiting planet AU Mic b, with an estimated mass of $17.1^{+4.7}_{-4.5}$ M$_{odot}$ and a bulk density of $1.3 pm 0.4$ g/cm$^{-3}$, inducing a RV signature of semi-amplitude $K=8.5^{+2.3}_{-2.2}$ m/s in the spectrum of its host star. A consistent detection is independently obtained when we simultaneously image stellar surface inhomogeneities and estimate the planet parameters with Zeeman-Doppler Imaging (ZDI). Using ZDI, we invert the time series of unpolarized and circularly-polarized spectra into surface brightness and large-scale magnetic maps. We find a mainly poloidal and axisymmetric field of 475 G, featuring, in particular, a dipole of 450 G tilted at 19{deg} to the rotation axis. Moreover, we detect a strong differential rotation of d$Omega = 0.167 pm 0.009$ rad/d shearing the large-scale field, about twice stronger than that shearing the brightness distribution, suggesting that both observables probe different layers of the convective zone. Even though we caution that more RV measurements are needed to accurately pin down the planet mass, AU Mic b already appears as a prime target for constraining planet formation models, studying the interactions with the surrounding debris disk, and characterizing its atmosphere with upcoming space- and ground-based missions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا