ﻻ يوجد ملخص باللغة العربية
Gliese 876 harbors one of the most dynamically rich and well-studied exoplanetary systems. The nearby M4V dwarf hosts four known planets, the outer three of which are trapped in a Laplace mean-motion resonance. A thorough characterization of the complex resonant perturbations exhibited by the orbiting planets, and the chaotic dynamics therein, is key to a complete picture of the systems formation and evolutionary history. Here we present a reanalysis of the system using six years of new radial velocity (RV) data from four instruments. This new data augments and more than doubles the size of the decades-long collection of existing velocity measurements. We provide updated estimates of the system parameters by employing a computationally efficient Wisdom-Holman N-body symplectic integrator, coupled with a Gaussian Process (GP) regression model to account for correlated stellar noise. Experiments with synthetic RV data show that the dynamical characterization of the system can differ depending on whether a white noise or correlated noise model is adopted. Despite there being a region of stability for an additional planet in the resonant chain, we find no evidence for one. Our new parameter estimates place the system even deeper into resonance than previously thought and suggest that the system might be in a low energy, quasi-regular double apsidal corotation resonance. This result and others will be used in a subsequent study on the primordial migration processes responsible for the formation of the resonant chain.
Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disk, and a natural consequence of irregular motion. In this paper we show that resonant multi-planetary system
AU Mic is a young, active star whose transiting planet was recently detected. We report our analysis of its TESS data, where we modeled the BY Draconis type quasi-periodic rotational modulation by starspots simultaneously to the flaring activity and
Asteroids in mean motion resonances with giant planets are common in the solar system, but it was not until recently that several asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. A retrograde co-orbital asteroid
Extrasolar systems with planets on eccentric orbits close to or in mean-motion resonances are common. The classical low-order resonant Hamiltonian expansion is unfit to describe the long-term evolution of these systems. We extend the Laplace-Lagrange
We study the capture and crossing probabilities into the 3:1 mean motion resonance with Jupiter for a small asteroid that migrates from the inner to the middle Main Belt under the action of the Yarkovsky effect. We use an algebraic mapping of the ave