ترغب بنشر مسار تعليمي؟ اضغط هنا

Helping Reduce Environmental Impact of Aviation with Machine Learning

81   0   0.0 ( 0 )
 نشر من قبل Ashish Kapoor
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Ashish Kapoor




اسأل ChatGPT حول البحث

Commercial aviation is one of the biggest contributors towards climate change. We propose to reduce environmental impact of aviation by considering solutions that would reduce the flight time. Specifically, we first consider improving winds aloft forecast so that flight planners could use better information to find routes that are efficient. Secondly, we propose an aircraft routing method that seeks to find the fastest route to the destination by considering uncertainty in the wind forecasts and then optimally trading-off between exploration and exploitation.



قيم البحث

اقرأ أيضاً

As deep neural networks (DNNs) get adopted in an ever-increasing number of applications, explainability has emerged as a crucial desideratum for these models. In many real-world tasks, one of the principal reasons for requiring explainability is to i n turn assess prediction robustness, where predictions (i.e., class labels) that do not conform to their respective explanations (e.g., presence or absence of a concept in the input) are deemed to be unreliable. However, most, if not all, prior methods for checking explanation-conformity (e.g., LIME, TCAV, saliency maps) require significant manual intervention, which hinders their large-scale deployability. In this paper, we propose a robustness-assessment framework, at the core of which is the idea of using machine-checkable concepts. Our framework defines a large number of concepts that the DNN explanations could be based on and performs the explanation-conformity check at test time to assess prediction robustness. Both steps are executed in an automated manner without requiring any human intervention and are easily scaled to datasets with a very large number of classes. Experiments on real-world datasets and human surveys show that our framework is able to enhance prediction robustness significantly: the predictions marked to be robust by our framework have significantly higher accuracy and are more robust to adversarial perturbations.
Algorithmic systems---from rule-based bots to machine learning classifiers---have a long history of supporting the essential work of content moderation and other curation work in peer production projects. From counter-vandalism to task routing, basic machine prediction has allowed open knowledge projects like Wikipedia to scale to the largest encyclopedia in the world, while maintaining quality and consistency. However, conversations about how quality control should work and what role algorithms should play have generally been led by the expert engineers who have the skills and resources to develop and modify these complex algorithmic systems. In this paper, we describe ORES: an algorithmic scoring service that supports real-time scoring of wiki edits using multiple independent classifiers trained on different datasets. ORES decouples several activities that have typically all been performed by engineers: choosing or curating training data, building models to serve predictions, auditing predictions, and developing interfaces or automated agents that act on those predictions. This meta-algorithmic system was designed to open up socio-technical conversations about algorithms in Wikipedia to a broader set of participants. In this paper, we discuss the theoretical mechanisms of social change ORES enables and detail case studies in participatory machine learning around ORES from the 5 years since its deployment.
Behavioral decision theories aim to explain human behavior. Can they help predict it? An open tournament for prediction of human choices in fundamental economic decision tasks is presented. The results suggest that integration of certain behavioral t heories as features in machine learning systems provides the best predictions. Surprisingly, the most useful theories for prediction build on basic properties of human and animal learning and are very different from mainstream decision theories that focus on deviations from rational choice. Moreover, we find that theoretical features should be based not only on qualitative behavioral insights (e.g. loss aversion), but also on quantitative behavioral foresights generated by functional descriptive models (e.g. Prospect Theory). Our analysis prescribes a recipe for derivation of explainable, useful predictions of human decisions.
This document serves as a technical report for the analysis of on-demand transport dataset. Moreover we show how the dataset can be used to develop a market formation algorithm based on machine learning. Data used in this work comes from Liftago, a P rague based company which connects taxi drivers and customers through a smartphone app. The dataset is analysed from the machine-learning perspective: we give an overview of features available as well as results of feature ranking. Later we propose the SImple Data-driven MArket Formation (SIDMAF) algorithm which aims to improve a relevance while connecting customers with relevant drivers. We compare the heuristics currently used by Liftago with SIDMAF using two key performance indicators.
150 - Hendrik Heuer 2021
At the latest since the advent of the Internet, disinformation and conspiracy theories have become ubiquitous. Recent examples like QAnon and Pizzagate prove that false information can lead to real violence. In this motivation statement for the Works hop on Human Aspects of Misinformation at CHI 2021, I explain my research agenda focused on 1. why people believe in disinformation, 2. how people can be best supported in recognizing disinformation, and 3. what the potentials and risks of different tools designed to fight disinformation are.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا