ترغب بنشر مسار تعليمي؟ اضغط هنا

Liftago On-Demand Transport Dataset and Market Formation Algorithm Based on Machine Learning

70   0   0.0 ( 0 )
 نشر من قبل Jan Drchal
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This document serves as a technical report for the analysis of on-demand transport dataset. Moreover we show how the dataset can be used to develop a market formation algorithm based on machine learning. Data used in this work comes from Liftago, a Prague based company which connects taxi drivers and customers through a smartphone app. The dataset is analysed from the machine-learning perspective: we give an overview of features available as well as results of feature ranking. Later we propose the SImple Data-driven MArket Formation (SIDMAF) algorithm which aims to improve a relevance while connecting customers with relevant drivers. We compare the heuristics currently used by Liftago with SIDMAF using two key performance indicators.



قيم البحث

اقرأ أيضاً

Culture is core to human civilization, and is essential for human intellectual achievements in social context. Culture also influences how humans work together, perform particular task and overall lifestyle and dealing with other groups of civilizati on. Thus, culture is concerned with establishing shared ideas, particularly those playing a key role in success. Does it impact on how two individuals can work together in achieving certain goals? In this paper, we establish a means to derive cultural association and map it to culturally mediated success. Human interactions with the environment are typically in the form of expressions. Association between culture and behavior produce similar beliefs which lead to common principles and actions, while cultural similarity as a set of common expressions and responses. To measure cultural association among different candidates, we propose the use of a Graphical Association Method (GAM). The behaviors of candidates are captured through series of expressions and represented in the graphical form. The association among corresponding node and core nodes is used for the same. Our approach provides a number of interesting results and promising avenues for future applications.
316 - Q. Wang , Y. Zhou , J. Shen 2021
This article comes up with an intraday trading strategy under T+1 using Markowitz optimization and Multilayer Perceptron (MLP) with published stock data obtained from the Shenzhen Stock Exchange and Shanghai Stock Exchange. The empirical results reve al the profitability of Markowitz portfolio optimization and validate the intraday stock price prediction using MLP. The findings further combine the Markowitz optimization, an MLP with the trading strategy, to clarify this strategys feasibility.
80 - Ashish Kapoor 2020
Commercial aviation is one of the biggest contributors towards climate change. We propose to reduce environmental impact of aviation by considering solutions that would reduce the flight time. Specifically, we first consider improving winds aloft for ecast so that flight planners could use better information to find routes that are efficient. Secondly, we propose an aircraft routing method that seeks to find the fastest route to the destination by considering uncertainty in the wind forecasts and then optimally trading-off between exploration and exploitation.
63 - Fotis Kalaganis 2016
We investigated the possibility of using a machine-learning scheme in conjunction with commercial wearable EEG-devices for translating listeners subjective experience of music into scores that can be used for the automated annotation of music in popu lar on-demand streaming services. Based on the established -neuroscientifically sound- concepts of brainwave frequency bands, activation asymmetry index and cross-frequency-coupling (CFC), we introduce a Brain Computer Interface (BCI) system that automatically assigns a rating score to the listened song. Our research operated in two distinct stages: i) a generic feature engineering stage, in which features from signal-analytics were ranked and selected based on their ability to associate music induced perturbations in brainwaves with listeners appraisal of music. ii) a personalization stage, during which the efficiency of ex- treme learning machines (ELMs) is exploited so as to translate the derived pat- terns into a listeners score. Encouraging experimental results, from a pragmatic use of the system, are presented.
This article presents a unique design for a parser using the Ant Colony Optimization algorithm. The paper implements the intuitive thought process of human mind through the activities of artificial ants. The scheme presented here uses a bottom-up app roach and the parsing program can directly use ambiguous or redundant grammars. We allocate a node corresponding to each production rule present in the given grammar. Each node is connected to all other nodes (representing other production rules), thereby establishing a completely connected graph susceptible to the movement of artificial ants. Each ant tries to modify this sentential form by the production rule present in the node and upgrades its position until the sentential form reduces to the start symbol S. Successful ants deposit pheromone on the links that they have traversed through. Eventually, the optimum path is discovered by the links carrying maximum amount of pheromone concentration. The design is simple, versatile, robust and effective and obviates the calculation of the above mentioned sets and precedence relation tables. Further advantages of our scheme lie in i) ascertaining whether a given string belongs to the language represented by the grammar, and ii) finding out the shortest possible path from the given string to the start symbol S in case multiple routes exist.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا