ترغب بنشر مسار تعليمي؟ اضغط هنا

Unifying Model Explainability and Robustness via Machine-Checkable Concepts

121   0   0.0 ( 0 )
 نشر من قبل Vedant Nanda
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As deep neural networks (DNNs) get adopted in an ever-increasing number of applications, explainability has emerged as a crucial desideratum for these models. In many real-world tasks, one of the principal reasons for requiring explainability is to in turn assess prediction robustness, where predictions (i.e., class labels) that do not conform to their respective explanations (e.g., presence or absence of a concept in the input) are deemed to be unreliable. However, most, if not all, prior methods for checking explanation-conformity (e.g., LIME, TCAV, saliency maps) require significant manual intervention, which hinders their large-scale deployability. In this paper, we propose a robustness-assessment framework, at the core of which is the idea of using machine-checkable concepts. Our framework defines a large number of concepts that the DNN explanations could be based on and performs the explanation-conformity check at test time to assess prediction robustness. Both steps are executed in an automated manner without requiring any human intervention and are easily scaled to datasets with a very large number of classes. Experiments on real-world datasets and human surveys show that our framework is able to enhance prediction robustness significantly: the predictions marked to be robust by our framework have significantly higher accuracy and are more robust to adversarial perturbations.



قيم البحث

اقرأ أيضاً

Procedural Content Generation via Machine Learning (PCGML) refers to a group of methods for creating game content (e.g. platformer levels, game maps, etc.) using machine learning models. PCGML approaches rely on black box models, which can be difficu lt to understand and debug by human designers who do not have expert knowledge about machine learning. This can be even more tricky in co-creative systems where human designers must interact with AI agents to generate game content. In this paper we present an approach to explainable artificial intelligence in which certain training instances are offered to human users as an explanation for the AI agents actions during a co-creation process. We evaluate this approach by approximating its ability to provide human users with the explanations of AI agents actions and helping them to more efficiently cooperate with the AI agent.
80 - Ashish Kapoor 2020
Commercial aviation is one of the biggest contributors towards climate change. We propose to reduce environmental impact of aviation by considering solutions that would reduce the flight time. Specifically, we first consider improving winds aloft for ecast so that flight planners could use better information to find routes that are efficient. Secondly, we propose an aircraft routing method that seeks to find the fastest route to the destination by considering uncertainty in the wind forecasts and then optimally trading-off between exploration and exploitation.
This document serves as a technical report for the analysis of on-demand transport dataset. Moreover we show how the dataset can be used to develop a market formation algorithm based on machine learning. Data used in this work comes from Liftago, a P rague based company which connects taxi drivers and customers through a smartphone app. The dataset is analysed from the machine-learning perspective: we give an overview of features available as well as results of feature ranking. Later we propose the SImple Data-driven MArket Formation (SIDMAF) algorithm which aims to improve a relevance while connecting customers with relevant drivers. We compare the heuristics currently used by Liftago with SIDMAF using two key performance indicators.
Managing inputs that are novel, unknown, or out-of-distribution is critical as an agent moves from the lab to the open world. Novelty-related problems include being tolerant to novel perturbations of the normal input, detecting when the input include s novel items, and adapting to novel inputs. While significant research has been undertaken in these areas, a noticeable gap exists in the lack of a formalized definition of novelty that transcends problem domains. As a team of researchers spanning multiple research groups and different domains, we have seen, first hand, the difficulties that arise from ill-specified novelty problems, as well as inconsistent definitions and terminology. Therefore, we present the first unified framework for formal theories of novelty and use the framework to formally define a family of novelty types. Our framework can be applied across a wide range of domains, from symbolic AI to reinforcement learning, and beyond to open world image recognition. Thus, it can be used to help kick-start new research efforts and accelerate ongoing work on these important novelty-related problems. This extended version of our AAAI 2021 paper included more details and examples in multiple domains.
The widespread adoption of black-box models in Artificial Intelligence has enhanced the need for explanation methods to reveal how these obscure models reach specific decisions. Retrieving explanations is fundamental to unveil possible biases and to resolve practical or ethical issues. Nowadays, the literature is full of methods with different explanations. We provide a categorization of explanation methods based on the type of explanation returned. We present the most recent and widely used explainers, and we show a visual comparison among explanations and a quantitative benchmarking.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا