ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear clocks for testing fundamental physics

178   0   0.0 ( 0 )
 نشر من قبل Marianna Safronova
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-energy, long-lived isomer in $^{229}$Th, first studied in the 1970s as an exotic feature in nuclear physics, continues to inspire a multidisciplinary community of physicists. Using the nuclear resonance frequency, determined by the strong and electromagnetic interactions inside the nucleus, it is possible to build a highly precise nuclear clock that will be fundamentally different from all other atomic clocks based on resonant frequencies of the electron shell. The nuclear clock will open opportunities for highly sensitive tests of fundamental principles of physics, particularly in searches for violations of Einsteins equivalence principle and for new particles and interactions beyond the standard model. It has been proposed to use the nuclear clock to search for variations of the electromagnetic and strong coupling constants and for dark matter searches. The $^{229}$Th nuclear optical clock still represents a major challenge in view of the tremendous gap of nearly 17 orders of magnitude between the present uncertainty in the nuclear transition frequency and the natural linewidth. Significant experimental progress has been achieved in recent years, which will be briefly reviewed. Moreover, a research strategy will be outlined to consolidate our present knowledge about essential $^{229rm{m}}$Th properties, to determine the nuclear transition frequency with laser spectroscopic precision, realize different types of nuclear clocks and apply them in precision frequency comparisons with optical atomic clocks to test fundamental physics. Two avenues will be discussed: laser-cooled trapped $^{229}$Th ions that allow experiments with complete control on the nucleus-electron interaction and minimal systematic frequency shifts, and Th-doped solids enabling experiments at high particle number and in different electronic environments.



قيم البحث

اقرأ أيضاً

Quantum metrology deals with improving the resolution of instruments that are otherwise limited by shot noise and it is therefore a promising avenue for enabling scientific breakthroughs. The advantage can be even more striking when quantum enhanceme nt is combined with correlation techniques among several devices. Here, we present and realize a correlation interferometry scheme exploiting bipartite quantum correlated states injected in two independent interferometers. The scheme outperforms classical analogues in detecting a faint signal that may be correlated/uncorrelated between the two devices. We also compare its sensitivity with that obtained for a pair of two independent squeezed modes, each addressed to one interferometer, for detecting a correlated stochastic signal in the MHz frequency band. Being the simpler solution, it may eventually find application to fundamental physics tests, e.g., searching for the effects predicted by some Planck scale theories.
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter. Searches such as the cosmic axion spin-precession experiments (CASPEr) are ultimately limited by quantum-mechanical noise sources, in pa rticular, spin-projection noise. We discuss how such fundamental limits can potentially be reached. We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise. Calculation of the total noise spectrum takes into account the modification of the circuit impedance by the presence of nuclear spins, as well as the circuit back-action on the spin ensemble. Suppression of the circuit back-action is especially important in order for the spin-projection noise limits of searches for axion-like dark matter to reach the quantum chromodynamic axion sensitivity.
We use two-dimensional transverse laser cooling to produce an ultracold beam of YbF molecules. Through experiments and numerical simulations, we study how the cooling is influenced by the polarization configuration, laser intensity, laser detuning an d applied magnetic field. The ultracold part of the beam contains more than $2 times 10^5$ molecules per shot and has a temperature below 200 $mu$K, and the cooling yields a 300-fold increase in the brightness of the beam. The method can improve the precision of experiments that use molecules to test fundamental physics. In particular, the beam is suitable for measuring the electron electric dipole moment with a statistical precision better than $10^{-30}$ e cm.
Atomic physics techniques for the determination of ground-state properties of radioactive isotopes are very sensitive and provide accurate masses, binding energies, Q-values, charge radii, spins, and electromagnetic moments. Many fields in nuclear ph ysics benefit from these highly accurate numbers. They give insight into details of the nuclear structure for a better understanding of the underlying effective interactions, provide important input for studies of fundamental symmetries in physics, and help to understand the nucleosynthesis processes that are responsible for the observed chemical abundances in the Universe. Penning-trap and and storage-ring mass spectrometry as well as laser spectroscopy of radioactive nuclei have now been used for a long time but significant progress has been achieved in these fields within the last decade. The basic principles of laser spectroscopic investigations, Penning-trap and storage-ring mass measurements of short-lived nuclei are summarized and selected physics results are discussed.
149 - T.K. Ghosh 2018
Progress in nuclear physics is driven by the experimental observation that requires state of the art detectors to measure various kinematic properties, such as energy, momentum, position etc. of the particles produced in a nuclear reaction. Advances in detector technology has enabled nuclear physicists to measure these quantities with better precision, and the reduced cost of the detection system has helped to have larger detection systems (array of detectors) to measure the rare processes with greater sensitivity. Several detection systems have been designed, developed and built in India over last few decades and are being used by the physicists. In this article, I will focus on such developments of detection systems at Variable Energy Cyclotron Centre (VECC), Kolkata.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا