ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum sensitivity limits of nuclear magnetic resonance experiments searching for new fundamental physics

100   0   0.0 ( 0 )
 نشر من قبل Alexander Sushkov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter. Searches such as the cosmic axion spin-precession experiments (CASPEr) are ultimately limited by quantum-mechanical noise sources, in particular, spin-projection noise. We discuss how such fundamental limits can potentially be reached. We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise. Calculation of the total noise spectrum takes into account the modification of the circuit impedance by the presence of nuclear spins, as well as the circuit back-action on the spin ensemble. Suppression of the circuit back-action is especially important in order for the spin-projection noise limits of searches for axion-like dark matter to reach the quantum chromodynamic axion sensitivity.

قيم البحث

اقرأ أيضاً

The low-energy, long-lived isomer in $^{229}$Th, first studied in the 1970s as an exotic feature in nuclear physics, continues to inspire a multidisciplinary community of physicists. Using the nuclear resonance frequency, determined by the strong and electromagnetic interactions inside the nucleus, it is possible to build a highly precise nuclear clock that will be fundamentally different from all other atomic clocks based on resonant frequencies of the electron shell. The nuclear clock will open opportunities for highly sensitive tests of fundamental principles of physics, particularly in searches for violations of Einsteins equivalence principle and for new particles and interactions beyond the standard model. It has been proposed to use the nuclear clock to search for variations of the electromagnetic and strong coupling constants and for dark matter searches. The $^{229}$Th nuclear optical clock still represents a major challenge in view of the tremendous gap of nearly 17 orders of magnitude between the present uncertainty in the nuclear transition frequency and the natural linewidth. Significant experimental progress has been achieved in recent years, which will be briefly reviewed. Moreover, a research strategy will be outlined to consolidate our present knowledge about essential $^{229rm{m}}$Th properties, to determine the nuclear transition frequency with laser spectroscopic precision, realize different types of nuclear clocks and apply them in precision frequency comparisons with optical atomic clocks to test fundamental physics. Two avenues will be discussed: laser-cooled trapped $^{229}$Th ions that allow experiments with complete control on the nucleus-electron interaction and minimal systematic frequency shifts, and Th-doped solids enabling experiments at high particle number and in different electronic environments.
We present an open-source software for the simulation of observables in nuclear magnetic/quadrupole resonance experiments (NMR/NQR) on solid-state samples, developed to assist experimental research in the design of new strategies for the investigatio n of quantum materials inspired by the early NMR/NQR quantum computation protocols. % The software is based on a quantum mechanical description of nuclear spin dynamics in NMR/NQR experiments and has been widely tested on both theoretical and experimental available results. Moreover, the structure of the software allows an easy generalization of basic experiments to more sophisticated ones, as it includes all the libraries required for the numerical simulation of generic spin systems. In order to make the program easily accessible to a large user base, we developed a user-friendly graphical interface and fully-detailed documentation. Lastly, we portray several examples of the execution of the code that demonstrate the potential of NMR/NQR for the scopes of quantum control and quantum information processing.
An extension of the New Standard Model, by introducing a mixing of the low mass ``active neutrinos with heavy ones, or by any model with lepton flavor violation, is considered. This leads to non-orthogonal neutrino production and detection states and to modifications of neutrino oscillations in both, vacuum and matter. The possibility of the discovery of such effects in current and future neutrino oscillation experiments is discussed. First order approximation formulas for the flavor transition probabilities in constant density matter, for all experimentally available channels, are given. Numerical calculations of flavor transition probabilities for two sets of New Physics parameters describing a single ``effective heavy neutrino state, both satisfying present experimental constraints, have been performed. Two energy ranges and several baselines, assuming both the current ($pm2sigma$) and the expected in future ($pm3%$) errors of the neutrino oscillation parameters are considered, keeping their present central values. It appears that the biggest potential of the discovery of the possible presence of any New Physics is pronounced in oscillation channels in which $ u_{e}$, $ u_{bar{e}}$ are not involved at all, especially for two baselines, $L=3000 km$ and $L=7500 km$, which for other reasons are also called ``magic for future $Neutrino Factory$ experiments.
150 - Ranjith Nair , Mile Gu 2020
In Quantum Illumination (QI), a signal beam initially entangled with an idler beam held at the receiver interrogates a target region bathed in thermal background light. The returned beam is measured jointly with the idler in order to determine whethe r a weakly reflecting target is present. Using tools from quantum information theory, we derive lower bounds on the average error probability of detecting both specular and fading targets and on the mean squared error of estimating the reflectance of a detected target, which are obeyed by any QI transmitter satisfying a signal energy constraint. For bright thermal backgrounds, we show that the QI system using multiple copies of low-brightness two-mode squeezed vacuum states is nearly optimal. More generally, our results place limits on the best possible performance achievable using QI systems at all wavelengths, and at all signal and background noise levels.
We propose a quantum algorithm for inferring the molecular nuclear spin Hamiltonian from time-resolved measurements of spin-spin correlators, which can be obtained via nuclear magnetic resonance (NMR). We focus on learning the anisotropic dipolar ter m of the Hamiltonian, which generates dynamics that are challenging-to-classically-simulate in some contexts. We demonstrate the ability to directly estimate the Jacobian and Hessian of the corresponding learning problem on a quantum computer, allowing us to learn the Hamiltonian parameters. We develop algorithms for performing this computation on both noisy near-term and future fault-tolerant quantum computers. We argue that the former is promising as an early beyond-classical quantum application since it only requires evolution of a local spin Hamiltonian. We investigate the example of a protein (ubiquitin) confined in a membrane as a benchmark of our method. We isolate small spin clusters, demonstrate the convergence of our learning algorithm on one such example, and then investigate the learnability of these clusters as we cross the ergodic-MBL phase transition by suppressing the dipolar interaction. We see a clear correspondence between a drop in the multifractal dimension measured across many-body eigenstates of these clusters, and a transition in the structure of the Hessian of the learning cost-function (from degenerate to learnable). Our hope is that such quantum computations might enable the interpretation and development of new NMR techniques for analyzing molecular structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا