ﻻ يوجد ملخص باللغة العربية
We use two-dimensional transverse laser cooling to produce an ultracold beam of YbF molecules. Through experiments and numerical simulations, we study how the cooling is influenced by the polarization configuration, laser intensity, laser detuning and applied magnetic field. The ultracold part of the beam contains more than $2 times 10^5$ molecules per shot and has a temperature below 200 $mu$K, and the cooling yields a 300-fold increase in the brightness of the beam. The method can improve the precision of experiments that use molecules to test fundamental physics. In particular, the beam is suitable for measuring the electron electric dipole moment with a statistical precision better than $10^{-30}$ e cm.
Quantum metrology deals with improving the resolution of instruments that are otherwise limited by shot noise and it is therefore a promising avenue for enabling scientific breakthroughs. The advantage can be even more striking when quantum enhanceme
The low-energy, long-lived isomer in $^{229}$Th, first studied in the 1970s as an exotic feature in nuclear physics, continues to inspire a multidisciplinary community of physicists. Using the nuclear resonance frequency, determined by the strong and
The text below was written during two visits that Daniel Segal made at Universit{e} Paris 13. Danny stayed at Laboratoire de Physique des Lasers the summers of 2008 and 2009 to participate in the exploration of a novel lead in the field of ultra-high
Chemical reactions can be surprisingly efficient at ultracold temperatures ( < 1mK) due to the wave nature of atoms and molecules. The study of reactions in the ultracold regime is a new research frontier enabled by cooling and trapping techniques de
We studied noise properties of microwave signals transmitted through the cryogenic resonator. The experiments were performed with the 11.342 GHz sapphire loaded cavity resonator cooled to 6.2 K. Based on the measured transmission coefficient of the c