ﻻ يوجد ملخص باللغة العربية
Quantum metrology deals with improving the resolution of instruments that are otherwise limited by shot noise and it is therefore a promising avenue for enabling scientific breakthroughs. The advantage can be even more striking when quantum enhancement is combined with correlation techniques among several devices. Here, we present and realize a correlation interferometry scheme exploiting bipartite quantum correlated states injected in two independent interferometers. The scheme outperforms classical analogues in detecting a faint signal that may be correlated/uncorrelated between the two devices. We also compare its sensitivity with that obtained for a pair of two independent squeezed modes, each addressed to one interferometer, for detecting a correlated stochastic signal in the MHz frequency band. Being the simpler solution, it may eventually find application to fundamental physics tests, e.g., searching for the effects predicted by some Planck scale theories.
We use two-dimensional transverse laser cooling to produce an ultracold beam of YbF molecules. Through experiments and numerical simulations, we study how the cooling is influenced by the polarization configuration, laser intensity, laser detuning an
In this paper, we investigate the phase sensitivities in two-path optical interferometry with asymmetric beam splitters. Here, we present the optimal conditions for the transmission ratio and the phase of the beam splitter to gain the highest sensiti
The low-energy, long-lived isomer in $^{229}$Th, first studied in the 1970s as an exotic feature in nuclear physics, continues to inspire a multidisciplinary community of physicists. Using the nuclear resonance frequency, determined by the strong and
The fundamental quantum interferometry bound limits the sensitivity of an interferometer for a given total rate of photons and for a given decoherence rate inside the measurement device.We theoretically show that the recently reported quantum-noise l
Quantum superposition is central to quantum theory but challenges our concepts of reality and spacetime when applied to macroscopic objects like Schrodingers cat. For that reason, it has been a long-standing question whether quantum physics remains v