ﻻ يوجد ملخص باللغة العربية
The Travelling Thief Problem (TTP) is a challenging combinatorial optimization problem that attracts many scholars. The TTP interconnects two well-known NP-hard problems: the Travelling Salesman Problem (TSP) and the 0-1 Knapsack Problem (KP). Increasingly algorithms have been proposed for solving this novel problem that combines two interdependent sub-problems. In this paper, TTP is investigated theoretically and empirically. An algorithm based on the score value calculated by our proposed formulation in picking items and sorting items in the reverse order in the light of the scoring value is proposed to solve the problem. Different approaches for solving the TTP are compared and analyzed; the experimental investigations suggest that our proposed approach is very efficient in meeting or beating current state-of-the-art heuristic solutions on a comprehensive set of benchmark TTP instances.
The travelling thief problem (TTP) is a multi-component optimisation problem involving two interdependent NP-hard components: the travelling salesman problem (TSP) and the knapsack problem (KP). Recent state-of-the-art TTP solvers modify the underlyi
The travelling thief problem (TTP) is a representative of multi-component optimisation problems with interacting components. TTP combines the knapsack problem (KP) and the travelling salesman problem (TSP). A thief performs a cyclic tour through a se
We introduce and analyze new envy-based fairness concepts for agents with weights that quantify their entitlements in the allocation of indivisible items. We propose two variants of weighted envy-freeness up to one item (WEF1): strong, where envy can
Many real-world optimization problems have multiple interacting components. Each of these can be NP-hard and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for
When a new user just signs up on a website, we usually have no information about him/her, i.e. no interaction with items, no user profile and no social links with other users. Under such circumstances, we still expect our recommender systems could at