ﻻ يوجد ملخص باللغة العربية
We introduce and analyze new envy-based fairness concepts for agents with weights that quantify their entitlements in the allocation of indivisible items. We propose two variants of weighted envy-freeness up to one item (WEF1): strong, where envy can be eliminated by removing an item from the envied agents bundle, and weak, where envy can be eliminated either by removing an item (as in the strong version) or by replicating an item from the envied agents bundle in the envying agents bundle. We show that for additive valuations, an allocation that is both Pareto optimal and strongly WEF1 always exists and can be computed in pseudo-polynomial time; moreover, an allocation that maximizes the weighted Nash social welfare may not be strongly WEF1, but always satisfies the weak version of the property. Moreover, we establish that a generalization of the round-robin picking sequence algorithm produces in polynomial time a strongly WEF1 allocation for an arbitrary number of agents; for two agents, we can efficiently achieve both strong WEF1 and Pareto optimality by adapting the adjusted winner procedure. Our work highlights several aspects in which weighted fair division is richer and more challenging than its unweighted counterpart.
We study the fair division of items to agents supposing that agents can form groups. We thus give natural generalizations of popular concepts such as envy-freeness and Pareto efficiency to groups of fixed sizes. Group envy-freeness requires that no g
We consider a fair division model in which agents have general valuations for bundles of indivisible items. We propose two new axiomatic properties for allocations in this model: EF1+- and EFX+-. We compare these with the existing EF1 and EFX. Althou
In this paper we introduce a class of Markov decision processes that arise as a natural model for many renewable resource allocation problems. Upon extending results from the inventory control literature, we prove that they admit a closed form soluti
We consider the problem of fairly allocating indivisible public goods. We model the public goods as elements with feasibility constraints on what subsets of elements can be chosen, and assume that agents have additive utilities across elements. Our m
In the budget-feasible allocation problem, a set of items with varied sizes and values are to be allocated to a group of agents. Each agent has a budget constraint on the total size of items she can receive. The goal is to compute a feasible allocati