ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio simulation of band-to-band tunneling FETs with single- and few-layer 2-D materials as channels

105   0   0.0 ( 0 )
 نشر من قبل Mathieu Luisier
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Full-band atomistic quantum transport simulations based on first principles are employed to assess the potential of band-to-band tunneling FETs (TFETs) with a 2-D channel material as future electronic circuit components. We demonstrate that single-layer (SL) transition metal dichalcogenides are not well suited for TFET applications. There might, however, exist a great variety of 2-D semiconductors that have not even been exfoliated yet; this paper pinpoints some of the most promising candidates among them to realize highly efficient TFETs. SL SnTe, As, TiNBr, and Bi are all found to ideally deliver ON-currents larger than 100{mu}A/{mu}m at 0.5-V supply voltage and 0.1 nA/{mu}m OFF-current value. We show that going from single to multiple layers can boost the TFET performance as long as the gain from a narrowing bandgap exceeds the loss from the deteriorating gate control. Finally, a 2-D van der Waals heterojunction TFET is revealed to perform almost as well as the best SL homojunction, paving the way for research in optimal 2-D material combinations.



قيم البحث

اقرأ أيضاً

Through advanced quantum mechanical simulations combining electron and phonon transport from first-principles self-heating effects are investigated in n-type transistors with a single-layer MoS2, WS2, and black phosphorus as channel materials. The se lected 2-D crystals all exhibit different phonon-limited mobility values, as well as electron and phonon properties, which has a direct influence on the increase of their lattice temperature and on the power dissipated inside their channel as a function of the applied gate voltage and electrical current magnitude. This computational study reveals (i) that self-heating plays a much more important role in 2-D materials than in Si nanowires, (ii) that it could severely limit the performance of 2-D devices at high current densities, and (iii) that black phosphorus appears less sensitive to this phenomenon than transition metal dichalcogenides.
We present an emph{ab-initio} study of the graphene quasi-particle band structure as function of the doping in G_0 W_0 approximation. We show that the LDA Fermi velocity is substantially renormalized and this renormalization rapidly decreases as func tion of the doping. We found, in agreement with previous papers, that close to the Dirac point the linear dispersion of the bands is broken but this behaviour disappears with a small doping. We discuss our results in the light of recent experiments on graphene and intercalate graphite.
Electronic transport in a carbon nanotube (CNT) metal-oxide-semiconductor field effect transistor (MOSFET) is simulated using the non-equilibrium Greens functions method with the account of electron-phonon scattering. For MOSFETs, ambipolar conductio n is explained via phonon-assisted band-to-band (Landau-Zener) tunneling. In comparison to the ballistic case, we show that the phonon scattering shifts the onset of ambipolar conduction to more positive gate voltage (thereby increasing the off current). It is found that the subthreshold swing in ambipolar conduction can be made as steep as 40mV/decade despite the effect of phonon scattering.
The Boltzmann transport equation is one of the most relevant framework to study the heat transport at the nanoscale, beyond the diffusive regime and up to the micrometer-scale. In the general case of three-dimensional devices, the particle Monte Carl o approach of phonon transport is particularly powerful and convenient, and requires reasonable computational resources. In this work, we propose an original and versatile particle Monte Carlo approach parametrized by using ab-initio data. Both the phonon dispersion and the phonon-phonon scattering rates have been computed by DFT calculation in the entire 3D Brillouin zone. To treat the phonon transport at rough interfaces, a combination of specular and diffuse reflections has been implemented in phase space. Thermal transport has been investigated in nanowires and thin films made of cubic and hexagonal Silicon, including edge roughness, in terms of effective thermal conductivity, phonon band contributions and heat flux orientation. It is shown that the effective thermal conductivity in quasi-ballistic regime obtained from our Monte Carlo simulation cannot be accurately fitted by simple semi-analytical Matthiessen-like models and that spectral approaches are mandatory to get good results. Our Full Band approach shows that some phonon branches exhibiting a negative group velocity in some parts of the Brillouin zone may contribute negatively to the total thermal flux. Besides, the thermal flux clearly appears to be oriented along directions of high density of states. The resulting anisotropy of the heat flux is discussed together with the influence of rough interfaces.
Chemical functionalization is a promising route to band gap engineering of graphene. We chemically grafted nitrophenyl groups onto exfoliated single-layer graphene sheets in the form of substrate-supported or free-standing films. Our transport measur ements demonstrate that non-suspended functionalized graphene behaves as a granular metal, with variable range hopping transport and a mobility gap ~ 0.1 eV at low temperature. For suspended graphene that allows functionalization on both surfaces, we demonstrate tuning of its electronic properties from a granular metal to a gapped semiconductor, in which charge transport occurs via thermal activation over a gap ~ 80 meV. This non-invasive and scalable functionalization technique paves the way for CMOS-compatible band gap engineering of graphene electronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا