ﻻ يوجد ملخص باللغة العربية
We present an emph{ab-initio} study of the graphene quasi-particle band structure as function of the doping in G_0 W_0 approximation. We show that the LDA Fermi velocity is substantially renormalized and this renormalization rapidly decreases as function of the doping. We found, in agreement with previous papers, that close to the Dirac point the linear dispersion of the bands is broken but this behaviour disappears with a small doping. We discuss our results in the light of recent experiments on graphene and intercalate graphite.
We study the symmetries of twisted trilayer graphenes band structure under various extrinsic perturbations, and analyze the role of long-range electron-electron interactions near the first magic angle. The electronic structure is modified by these in
We present the results of the calculations of longitudinal and Hall conductivities of AB-stacked bilayer graphene as a function of frequency, finite chemical potential, temperature both with and without magnetic fields on a base of 2- and 4-band effe
We present a numerical study of the doping dependence of the spectral function of the n-type cuprates. Using a variational cluster-perturbation theory approach based upon the self-energy-functional theory, the spectral function of the electron-doped
The extension of ab initio quantum many-body theory to higher accuracy and larger systems is intrinsically limited by the handling of large data objects in form of wave-function expansions and/or many-body operators. In this work we present matrix fa
We apply the quantum renormalization group to construct a holographic dual for the U(N) vector model for complex bosons defined on a lattice. The bulk geometry becomes dynamical as the hopping amplitudes which determine connectivity of space are prom